Sr1Dv intel: SR1DV — Intel — 1.40GHZ (Intel Celeron 2957U)

Intel Celeron Procesorius 2957u Sr1dv 1.4 Ghz Dual-core Cpu 15w 22nm Bga Lustai Nemokamas Pristatymas nuolaida ~ Kompiuterio dalys

Žymos: «intel core i7 880, «intel» procesorius, 9400f i5, procesorius rpga988b, serverio cpu intel core i7, bga su lga, intel celeron g3930, CPU, intel celeron, celeron g3900

Patarimai:

Kiekvienas elementas buvo išbandytas kritiškai prieš vežimo maršruto ,Mes turime

sukurti kelių bandymų stočių specialiai CPU ,prašome nusipirkti ją nerimauti nemokamai.

Žr. prieš diegdami PROCESORIUS:

1, išimkite originalus CPU, išvalyti dulkes nuo ventiliatoriaus ir šilumos kriaukle, išvalyti likutinės šilumos kriaukle originalus tepalas, ypač sunku tepalas turi būti kruopščiai išvalytos, tai yra labai svarbu!

2, teisinga kryptimi, į naują CPU, ir viršuje CPU padengtas plonu sluoksniu riebalų.Nedėkite per daug, tik gali užpildyti spragą tarp top CPU metalo kontakto ir šilumos kriaukle. Labiausiai idealus (iš pakelių, mes pristatė silikagelio kaip, pavyzdžiui, išspausti tinkamas 1/2 tepalas)

3, įdėti jį atgal į šilumos kriaukle, pirmasis pirštas paspaudus pelekai pereiti aukštyn ir žemyn kelis kartus, kad viduje tepalas tolygiai ir šalinamo oro, tada pagal skaitmeninės sekos žymėjimas varžtas pelekais (arba) įstrižainės) palaipsniui priveržti, kiekvieną sukimosi ratus prisukamas pagal varžtą, o ne įdėti sraigtų galų gale, kito sukimosi kol fiksuotojo pusiausvyrą.

4, jei CPU mašina po taško nėra šviesus, galite naudoti trintukas, nuvalykite ir metalo kontakto CPU plokštė (kartais CPU grindis nuo dulkių ir prakaito gali kreiptis), arba plokštė (plokštės BIOS biudžeto įvykdymo patvirtinimo duomenis).Atminties gali taip pat būti naudojamas ne trintukas.

Pastaba: dėl CPU, tokių kaip discovery CPU temperatūra yra per aukšta, arba, kai temperatūra yra aukšta ir žema nestabilumo, CPU ir atminties nėra šviesus, prašome atidžiai patikrinti, ar pirmiau 4 patikrinti, didžioji dauguma problemų gali būti išspręsta.

Intel Celeron 2957U specifikacijos

Specifikacijos gali būti naudojamas trumpalaikis

aukcionai aukcionas ir skelbimai svetainės Bendra informacija Tipas Rinkos segmente Mobiliojo Šeimos Modelio numeris CPU dalies numeris CL8064701570000 yra OEM/dėklas mikroprocesoriaus Dažnis 1400 MHz Magistralės sparta 5 GT/s DMI Laikrodis daugiklis 14 Paketo 1168-kamuolys micro-FCBGA paketas (FCBGA1168) Socket BGA1168 Dydis 1.57″ x 0.94″ / 4cm x 2.4 cm Įvedimo data Kaina, įvadas $132 S-spec numerius Dalies numeris Produkcijos perdirbėjai CL8064701570000 + Architektūra / Microarchitecture Microarchitecture Haswell Procesorius Core stepping D0 (SR1DV) Gamybos procesas 0.022 mikronų Duomenų plotis 64 bitų skaičius CPU 2 skaičius temas 2 Slankiojo kablelio Blokas Integruotas 1 Lygio talpyklos dydis 2 x 32 KB 8-būdas nustatyti, asociatyvus instrukcija podėlius

2 x 32 KB 8-būdas nustatyti, asociatyvus duomenų talpyklas 2 Lygio cache dydis 2 x 256 KB 8-būdas nustatyti, asociatyvus talpina 3 Lygio cache size 2 MB 8-būdas nustatyti, asociatyvus bendr. cache Fizinės atminties 16 GB Multiprocessing Ne palaikomi Plėtiniai ir Technologijų MMX instrukcijos SSE / Streaming SIMD Extensions SSE2 / Streaming SIMD Extensions 2 SSE3 / Streaming SIMD Extensions 3 SSSE3 / Papildomos Streaming SIMD Extensions 3 SSE4 / SSE4.1 + SSE4.2 / Streaming SIMD Extensions 4 EM64T / Extended Memory 64 technologijos / Intel 64 NX / XD / Execute disable bit VT-x / Virtualizavimo technologija Mažos galios funkcijų Enhanced SpeedStep technologija Integruota periferiniai įrenginiai / komponentai Integruota grafika GPU Tipas: HD (Haswell)

Grafika pakopa: GT1

Microarchitecture: Gen 7.5

Vykdymo vienetais: 10

Bazinė dažnis (MHz): 200

Didžiausias dažnis (MHz): 1000

Paremti ekranai: 3 Atminties valdiklis skaičius valdikliai: 1

Kanalų atmintis: 2

Palaikomos atminties: DDR3L-1333, DDR3L-1600, LPDDR3-1333, LPDDR3-1600

Maksimalus atminties pralaidumas (GB/s): 25.6 Kitų išorinių įrenginių, Direct Media Interface 2. 0 PCI Express 2.0 «sąsaja (10 juostų) Elektros / Šilumos parametrai Maksimali darbinė temperatūra 100°C Šilumos Dizaino Galia 15 W Pastabos apie» Intel Celeron 2957U procesorius yra šie saugumas, duomenų apsauga ir/arba programinės įrangos funkcijos: Užtikrinti Pagrindinių ir Greitai Saugojimo technologiją.PROCESORIUS yra suderinama su DirectX 11.2, OpenGL 4.3 ir OpenCL 1.2 Api.Grafika vienetas yra šios programinės įrangos funkcijos, įjungta: Intel Quick Sync Video ir Aiškaus Vaizdo technologija.

kodėl verta rinktis mus?

1:Konkurencingą Kainą:mūsų įmonė yra įsipareigojusi kompiuterio periferiniai priedai produktų pardavimo, mes turime labiausiai konkurencinga Kaina.

2:Vieno Langelio:Mes siūlome visų Rūšių kompiuterių Dalys.

3:Profesionalų aptarnavimą:Mes turime profesionalų komanda ir efektyvaus darbo srautą, kuris saugo mus, siūlančių geriausias paslaugas mūsų klientams.

4:Išbandyti prieš išsiuntimą;Saugos pakavimo dėžutė

5:Procesorius turėti vienerių metų garantija,atminties trijų metų garantija.

Intel Celeron 2957U SR1DV 1.4GHz PROCESOR — 6100610514

  • Aplikacja AllegroAplikacja Allegro
  • Allegro Smart!Allegro Smart!
  • Allegro PolecamAllegro Polecam

Oferta archiwalna. Zobacz aktualne oferty:

Oferta archiwalna

Intel Celeron 2957U SR1DV 1.4GHz PROCESOR (6100610514)

Kategoria: Procesory

Lokalizacja: Kraków

Zakończona o 10:55 dnia 18.04.2016 r.

Nie było ofert kupna

Wystawiono przez «Kup teraz» za 349,00 zł

Zobacz aktualne oferty

Sprzedający arvika_sklep

Inne przedmioty sprzedającego z kategorii Procesory Wszystkie przedmioty sprzedającego

Uzyskaj pomoc w sprawie oferty

Parametry

Stan
Nowy

Waga (z opakowaniem)
0

Opis

Przedmiot aukcji: Intel Celeron 2957U SR1DV 1.

4GHz PROCESOR

Opis produktu

Układ CPU Intel Mobile Celeron Dual-Core 1,6 GHz

Intel 2957U SR1DV

Socket type BGA1168

Stan: nowy

Gwarancja:

8 m-cy w przypadku montażu w naszym serwisie

1 m-c w przypadku montażu poza naszym serwisem

Cena: 349 zł

Do każdej transakcji wystawiamy paragon lub fakturę VAT

Zapraszamy do zapoznania się z naszą pełną ofertą na www.sklep.arvika.pl

Informacje


Wysyłka

Odbiór osobisty — 0pln
Poczta Polska — 5,5pln
(przedpłata / tylko dla wybranych produktów)
DPD / przedpłata — 13pln
DPD / pobranie — 16pln


Kontakt

Arvika Sklep
ul. Wybickiego 17
31-302 Kraków
Tel: +48 12 444 14 99
Kom: +48 605 660 548
Email: [email protected]
http://sklep.arvika.pl


O nas

Firma Arvika istnieje od roku 2006. Specjalizujemy się w świadczeniu usług związanych z naprawą pogwarancyjną sprzętu komputerowego. W chwili obecnej rozszerzamy swoją działalność o sprzedaż podzespołów komputerowych.

W przypadku jakichkolwiek pytań lub wątpliwości co do zakupionych przedmiotów prosimy o kontakt.

Po zakończeniu transakcji prosimy o wystawienie komentarza.


  • Top produkty na Allegro

    od

    249,99 zł

    Smartwatch Damski PLATNIUM Zegarek Dla Kobiety PL

    od 3 sprzedawców

    od

    179,99 zł

    Zegarek Męski Smartwatch Gry Wodoodporny Menu

    od 1 sprzedawcy

    od

    1429,00 zł

    Kamera IP Hikmicro Mini 1

    od 2 sprzedawców

    od

    35,89 zł

    Pirometr Benetech GM320-EU

    od 4 sprzedawców

    od

    149,99 zł

    Zegarek męski SMARTWATCH POWIADOMIENIA SMS BEZEL

    od 1 sprzedawcy

    od

    9,50 zł

    Akumulator niklowo-metalowo-wodorkowy (NiMH) Energizer AA (R6) 2000 mAh 4 szt.

    od 198 sprzedawców

    od

    799,00 zł

    Radioodtwarzacz akcesoryjny VW VAG 2-DIN 4×55 W

    od 1 sprzedawcy

    od

    6889,99 zł

    ATOMSTACK Znakowanie i grawerowanie laserowe dwa w jednym

    od 1 sprzedawcy

    od

    35,00 zł

    Klawiatura DBMEDIA 14x14mm cała x10

    od 1 sprzedawcy

    od

    1599,00 zł

    Telewizor LED LG 55UP751C 55″ 4K UHD czarny

    od 1 sprzedawcy

    od

    297,98 zł

    Szczoteczka elektryczna Philips HX6807/24 biała

    od 27 sprzedawców

    od

    109,00 zł

    Stacja pogody First Austria 2461-7

    od 2 sprzedawców

    od

    83,23 zł

    Dyfuzor zapachowy do samochodu mały długotrwały

    od 11 sprzedawców

    od

    499,00 zł

    Ploter, laser CNC — 65 x 65 cm — DIY — ACRO SET —

    od 1 sprzedawcy

    od

    149,50 zł

    Długopis 3D Intmix DŁUGOPIS 3D PEN 2023

    od 2 sprzedawców

    od

    79,90 zł

    Powerbank Baseus 10000 mAh czarny

    od 63 sprzedawców

    od

    87,00 zł

    Słuchawki bezprzewodowe douszne LENOVO SŁUCHAWKI BLUETOOTH BEZPRZEWODOWE

    od 2 sprzedawców

    od

    239,99 zł

    SMARTWATCH Zegarek INDUKCJA 1. 5CALA 454×454 EKG PL

    od 2 sprzedawców

    od

    209,00 zł

    Filtr nakranowy Tapp Water EcoPro

    od 5 sprzedawców

    Korzystanie z serwisu oznacza akceptację regulaminu.

    Intel 8086 — the processor that opened the era / Sudo Null IT News
    Today, in 2018, we are celebrating the fortieth anniversary of, perhaps, the key processor in the history of personal computers, namely the Intel 8086. rise in popularity of the computer as an individual unit available to each user. In honor of the 40th anniversary of the processor that started Intel’s transformation into a multi-billion dollar corporation, the company presented a small symbolic gift to its fans — it was the anniversary i7-8086K, the first processor in Intel’s history capable of running at 5 GHz right out of the box.

    But today we will not sing praises to the engineers of modern leading processors, but will return to the distant past, to 1976, where the history of Intel 8086 began. And it began with a completely different processor.

    In 1976, Intel challenged its engineers to create the world’s first multitasking microprocessor with an on-chip memory controller. Now these technological features can be easily found in even the most affordable processors on the market, but 42 years ago, such technological innovations promised to overtake an entire era — Intel planned to switch to 32-bit computing at a time when 8-bit systems dominated, and even 16 -bit were very far away. Unfortunately, or fortunately, the ambitions of Intel’s executives have faced the harsh reality of several postponements, technology challenges, and the realization that 1976 years have not yet stepped so far to realize such bold ideas. And most importantly, Intel was so carried away by the creation of, as they would say in the West, over-engineered architectures that they lost sight of practicality in terms of software. It was the impracticality and deliberate complexity of the system that was criticized at one of the meetings by a guest expert named Stephen Morse, a 36-year-old microelectronics engineer who then specialized in software. However, Intel was in no hurry to take into account the criticisms, so Morse’s notes went on the back burner.

    But as it turned out later, they were extremely useful — already in July 1976, a small company Zilog, founded by the inventor of Intel 4004 and Intel 8008 Federico Fagin, as well as Intel manager Ralf Ungermann and another 4004 developer, Japanese Masatoshi Shima, introduced to the market

    Improving the architecture of the original Intel processor, the Zilog team offered an inexpensive and high-performance processor, which was immediately loved by many manufacturers of equipment and leading platforms of the time. It was the Z-80 that formed the basis of the legendary ZX Spectrum, and was also installed in the no less famous Commodore 128 as a coprocessor. The Z-80 became incredibly successful in many parts of the world, and this success could not go unnoticed — Intel urgently decided that the Z-80 needed a worthy competitor.

    It was here that the company executives remembered the comments of Stephen Morse, and offered him to lead the creation of a fundamentally new processor, designed to compete with the novelty from Zilog. Intel didn’t see much reason to push the envelope on this project — back then everyone thought the new processor would be a quick answer to the Z-80 and would be forgotten over the next few years, so Morse got the green light for any experimentation. It was the obsessive idea that the processor should be built around the efficiency of working with software, as it turned out later, became the key to the development of the entire industry.

    In May 1976, Steve Morse began work on the architecture of a new processor. In essence, the task assigned to Morse was simple. If the new 16-bit chip is to provide a significant speed increase over the 8-bit 8080, it must differ in a number of ways. But Intel wanted to get consumers to revisit it. One way to achieve this was to upgrade a system designed for a less powerful processor, replacing which with a new one would work. To do this, ideally, the new processor should be compatible with any program written for the 8080.0005

    Morse had to build on the 8080 design, in which the processor assigned an «address» to each location where numbers were stored, much like classifier labels. The addresses were 16-bit binary numbers, which made it possible to designate 65536 different addresses. This ceiling was acceptable when developers needed to use memory sparingly. Now, however, consumers wanted more and insisted on breaking the 64K barrier.

    In July 1978, a new processor called the Intel 8086 hit the market.

    His release was not a sensation or an incredible success. For the first time, the processor hit the shelves as part of several budget computers that were not popular, and was also used in various terminals. A little later, it formed the basis of the NASA microcontroller, where it was used to control rocket launch diagnostic systems until the early 2000s.

    Morse left Intel in 1979, just before the company introduced the Intel 8088, an almost identical 8086 microprocessor that provided 8-bit compatibility by dividing the 16-bit bus into two cycles. Morse himself called this processor a «neutered» version of the 8086.

    The legendary status of the 8088 came later, when in 1980 IBM first thought about conquering the personal computer market and creating a computer that would be quite inexpensive and include mid-range components. It was the IBM 5150, better known under the IBM PC brand, that was based on the 8088 processor (in fact, the same 8086), thanks to which Intel became widely known even among ordinary users. But Motorola 68000 (the basis of the first Apple Macintosh) also claimed the place of 8088, but IBM management preferred Intel.

    The IBM PC quickly became a major force in the computer systems market, and Intel, following the “better-better” logic, continued to release processors — 80186, 80286, 80386, 80486, Pentium, and so on — based on the same basis Stephen Morse, which he laid down back in 8086. It was thanks to the last two digits that the architecture became known as «x86», and the incredible popularity of IBM computers provided Intel with huge profits and recognition as a brand.

    Architectural features 8086

    In terms of architectural features, Intel 8086 relied heavily on the experience of developing the 8080 processor, and its improved counterpart 8085, which entered the market in the summer of 1976. Despite some parallels, the 8086 was the company’s first 16-bit processor with 16 data channels and 20 address channels, capable of processing up to 1 MB of data, and also had a wide set of instructions that allowed, among other things, to perform division / multiplication operations. A feature of the 8086 was the presence of two modes — Minimum and Maximum, the latter of which assumed the use of a processor in a system with several processors, and the first — in classic systems with a single processor.

    The Intel 8086 was the first to introduce an instruction queue that allows you to store up to six bytes of instructions directly from memory, significantly reducing the time to process them. The 16-bit nature of the processor was not based on just a few components, because the 8086 was made up of a 16-bit ALU, 16-bit registers, and an internal and external data bus that processed data according to 16-bit instructions, making the system work much faster than with older Intel processors.

    Of course, due to such a large-scale set of innovations, the 8086 was much more expensive than its predecessor, but in a similar vein, the consumer had a choice — Intel offered to buy a new product in several versions, depending on the processor frequencies — they ranged from 5 to 10 MHz.

    Architecturally, the Intel 8086 microprocessor consisted of two hardware modules, an execution module and a bus interface module. The execution module told the bus interface module where to get instruction data from, and then proceeded to prepare and execute them. Its essence was reduced to data management using an instruction decoder and an ALU block, while the module itself did not have a direct connection to the data buses, and worked exclusively through the bus interface module.

    The execution module contained an ALU for performing logical and arithmetic operations such as multiplication, division, addition, subtraction, or OR, AND, and NOT operations. There was also a 16-bit flag register that stored various states of operations in the accumulator — there were 9 in total. , 6 of which were status flags, and 3 were system flags reflecting the status of the device.

    The former were: carry flag, parity flag, auxiliary carry flag, zero flag, sign flag, and overflow flag. The system flags included the trace flag, the interrupt enable flag, and the direction flag.

    In addition to the flags, the operation module contained 8 general purpose registers, which were used to transfer data over a 16-bit bus. At the same time, compatibility with the previous generation of software for 8-bit systems was maintained, because the general-purpose registers (AX, BX, CX, DX) could work both in the 16-bit bus mode and in the mode of reading data from the lower ones (AL, BL, CL, DL) and high (AH, BH, CH, DH) registers at the same time, providing two-channel operation in an 8-bit bus format. It was because of the emphasis on compatibility with previous platforms from a software point of view that the x86 architecture became key and served as the basis for most subsequent processors.

    Finally, the last of the registers in the module was a 16-bit pointer register that stored the address of the data segment in the memory buffer needed to complete the operation. The rest of the functional parts belonged to the adjacent bus interface module.

    The bus interface module contained much more functional components — it was responsible for processing all data and sending instructions to the execution module, reading addresses from computer memory and information from all available I / O ports, as well as writing data to available memory and through the above ports. Due to the fact that the execution module did not have a direct connection to the bus interface module, the interaction of the blocks took place via the internal data bus.

    This module contains one of the key architectural features of the 8086 processor — the instruction queue. The bus interface module includes an instruction queue capable of holding up to 6 bytes of instructions in a buffer, sending new instructions down the pipeline when requested by the execution module. The term pipelining appeared precisely with the introduction of the 8086 processor, since it means preparing the next instruction at the moment when the previous one is in progress.

    There are also 4 segment registers that are responsible for buffering the addresses of instructions and their associated data in the computer’s memory, and thereby providing access to the necessary segments to the central processor. The register also contains an instruction pointer (IP) containing the address of the next instruction destined for the execution unit.

    Finally, the last of the registers is a 16-bit instruction pointer containing the address of the next instruction to be executed.

    9The 0006 Intel 8086 was the company’s first 16-bit processor available in a 40-pin DIP (DIP) package, which, along with many other features, became one of the standards in microelectronics in subsequent years.

    Influence and legacy

    Stephen Morse, creating the concept of a small «daughter» processor within the walls of Intel, could hardly imagine that he was on the verge of creating a historic microprocessor.