Compare 2 cpus: PassMark — CPU Comparison

CPU Compare in Productivity and 80+ Gaming Benchmarks

How to Compare Processor Benchmarks

When shopping around to upgrade your fleet of business computers, the metric that stands out on labels and in ads is processor — or CPU — performance or speed. You should not, however, try to compare performance based on this one number. Processor performance is dependent on a number of factors and can vary depending on the hardware environment and the task being performed.

Clock Rate

CPU clock rate, sometimes inaccurately called «speed,» is a figure that reports the number of basic calculations, such as adding two numbers together, per second that a single processor core is capable of. The figure is based specifically on the frequency of an oscillator crystal which regulates the processor’s speed and temperature. A processor which runs at a higher temperature can run at a higher clock rate. Clock rates are measured in gigahertz, or billions of wave oscillations, per second. Typical processor cores have clock rates of between 1 GHz and 4 GHz. While clock rate is almost always reported as a spec for a machine, rarely does the clock rate alone mean much for a CPU’s overall performance, much less a computer’s.

Cores

Most contemporary CPUs contain between two and eight «cores.» Multiple cores allow processors to break tasks up and distribute them for higher performance. Multiplying the number of cores times the clock rate can give you a rough estimate of the processor’s maximum performance, but the number would not be totally accurate as some processing has to go into distributing tasks, and some applications make better use than others of multiple cores.

Benchmarking

To truly establish a processor’s performance, the processor has to be put to work on real-world tasks. Good benchmarking tests exercise processors by collecting information from a number of different hardware environments, each running a specific set of tasks. The results can then be compared to the results of other similar processors. Results of these tests, which represent fairly accurate estimates of processor performance, can be found at sites like Tom’s Hardware and CPUBenchmark.

Other Bottlenecks

The performance of a CPU is only one of the factors that determines overall computer performance. Disk drive access, network speed, video card performance, amount of memory and memory access speed can all affect system speed and responsiveness. Some combinations of hardware perform better than others as well. Besides looking at the CPU benchmarks and metrics reported by the manufacturer, it’s a good idea to read reviews of specific systems to find out how they perform in the real world.

You can compare processors in the same or different collection, generation, i9, i7, or i3. You can also compare different type of processors, like Intel® Core, Pentium, and Celeron, or any other type of Intel processors.

The Central Processing Unit (CPU), also known as a processor, is the brain of the computer and is thus the most important component. Unfortunately, comparing two different processors side-by-side can be tough, which can complicate any purchases you might make.

The bad news is that you can’t just rely on clock speed or cores, which are the two most heavily advertised aspects of processors. The good news is that you don’t need to know how a CPU works, although that can prove useful.

The other good news is that there are sites out there that make such comparisons easier. In this article, we’ll tell you exactly what matters and what doesn’t when comparing different processors, and how to compare them the right way.

Clock Speed Isn’t Everything

Clock speed and cores are the most heavily advertised aspect of processors. Clock speed is usually noted in hertz (e.g. 3.14 GHz) while the number of cores is usually advertised as dual-core, quad-core, hexa-core, or octa-core.

For a long time, it was this simple: the higher the clock speed, the faster the processor, and more cores meant better speeds. But processor technology today isn’t dependent as much on the clock speed and cores because CPUs now have several other parts that determine how fast they can perform.

In a nutshell, it comes down to how much computing can be done when all parts of a CPU come together in a single clock cycle. If performing Task X takes two clock cycles on CPU A and one clock cycle on CPU B, then CPU B might be the better processor even if CPU A has a higher clock speed.

Compare clock speeds only when you are trying to decide between two CPUs from the same family and same number of cores. What this means is that if you’re looking at two quad-core Intel Core i5 Skylake processors, then the one with the higher clock speed will be faster.

For any other scenario, the clock speed or cores don’t always indicate performance. If you’re comparing Intel Core i3 vs. Core i5 vs. Core i7 processors or Intel Core i5 vs. Core i7 vs. Core i9 processors, then clock speed and number of cores don’t matter. And if you’re comparing Intel vs. AMD or an AMD A10 vs. AMD A8 vs. AMD FX, then clock speed alone won’t tell you much.

Check Single-Threaded Benchmarks

The dirty little secret in the computer world is that even though you’re buying a processor with four cores, all four of those cores might not actually be used when you’re running applications.

Most software today is still single-threaded, which means the program is running as one process and a process can only run on one core. So even if you have four cores, you won’t be getting the full performance of all four cores for that application.

That’s why you also need to check the single-threaded (or single-core) performance of any processor before buying it. Not all companies explicitly release that information, so you’ll need to rely on third-party data from reliable resources like Passmark benchmark tests.

Passmark’s full list of CPU benchmarks has a single-threaded rating for each CPU.

Cache Benchmarks Is King

The cache is one of the most under-appreciated parts of a CPU. In fact, a cache with poor specs could be slowing down your PC! So always check the cache specs of a processor before you purchase it.

Cache is essentially RAM for your processor, which means that the processor uses the cache to store all of the functions it has recently performed. Whenever those functions are requested again, the processor can draw the data from the cache instead of performing it a second time, thus being faster.

Processors have different levels of cache, starting with L1 and going up to L3 or L4, and you should only compare cache size at the same level. If one CPU has L3 cache of 4 MB and another has L3 cache of 6 MB, the one with 6MB is the better choice (assuming clock speed, core, and single-threaded performance are all comparable).

Integrated Graphics Matter, Too

Intel and AMD have combined the CPU and the graphics card into an APU. New processors can usually handle the graphics requirements of most everyday users without requiring a separate graphics card.

These graphics chipsets also vary in performance depending on the processor. Again, you can’t compare an AMD to an Intel here, and even comparing within the same family can be confusing. For example, Intel has Intel HD, Intel Iris, and Intel Iris Pro graphics, but not every Iris is better than HD.

Meanwhile, AMD’s Athlon and FX series come without graphics chips but cost more than the APU-centric A-Series, so you’ll have to buy a graphics card if you’re getting an Athlon or FX processor.

In short, graphics processing on CPUs is still quite confusing, but you still need to pay attention to it! The best option is to consult third-party benchmarks and look for recommendations.

Futuremark developed the 3DMark graphics test, which is one of the best free Windows benchmark tools out there. You can check the 3DMark Physics Score of any processor and compare it to others in Futuremark’s processor list, which should give you a fair idea of which CPU has better graphics.

The Best Way to Compare CPUs

All of these factors come together to make CPU comparisons a difficult proposition. How do you know which one you should buy? Here are a few tips that may help.

The easiest and best way is to head to CPUAgent. This site compares two processors and gives ratings and explains the differences between the two in terms that any non-techie can also understand.

Benchmarks come from different sources like PassMark, PCMark, CompuBench, GeekBench, SkyDiver, and more. We basically save you the trip of going to many sites.

The score is a safe parameter in making your purchase decision, with the simple idea that whichever processor scored higher is the better one. CPUAgent also compares integrated graphics, telling you which APU has the better graphics performance.

In case you are looking for more details than what CPUAgent provides, I’d recommend the PC Builds Comparison Tool. Here you can browse in-depth benchmarks conducted by one of the best independent hardware review sites and even compare two processors side-by-side.

Other Factors That Affect Benchmarks

When it comes to overall performance, keep in mind that your processor is only as good as the rest of the hardware. If you buy a great processor and only stick in 2 GB of RAM, then it will be bottlenecked in speed.

Compare All CPU Specs, Benchmark Scores

CPU comparison helps you find the differences between CPUs. Using this tool, you can compare upto 3 CPUs side by side and see how they’re different from each other. Compare your selected CPUs now and find the right one for your computing needs.

Just enter the name of the CPUs you want to compare (2-3) and see the differences between them side-by side. You can compare the core count, threads, clock speeds, TDP, performance per watt and 100 other specs. Additionally, our tool also has benchmark score comparisons, so if there’s a score you trust such as Passmark, Geekbench, CineBench, then you can find their comparison scores too.

How to Compare CPUs?

Our CPU Comparison is straightforward to use. Add up to 3 processors of your choice in the search bar to compare with each other. Just start typing the name of the CPUs and our tool will find the perfect model you’re searching for. Do that for 2-3 processors and click the compare button. Our tool would now display the technical comparison of the CPUs you’ve choosen.

  • Check their key differences, like how many cores they have and what is their turbo boost frequency, base clock and turbo clock speed. Which one has more CPU threads to handle multitasking better.
  • Use the General Info section to compare their performance features like CPU temperature, Cache size, TDP, 64-bit support, semiconductor size, etc.
  • Then compare how much memory they have to offer. The more the memory, the better & faster the processor for multitasking.
  • You can also compare CPU benchmarks to see which one is leading and then buy the right one directly using the “Buy on Amazon” button.

There is no limit on using this CPU compare tool in a day. So compare your desired options (upto three at a time) till you find the right one.

You can also check our “Similar Comparisons” based on your selection to see which one really fits well with your requirements.

What CPU Specs are Compared?

Spec Description Range
Cores Responsible for
multitasking
Higher the better
Clock Speed/Frequency Indicates how fast a
processor is
Higher the better
Threads Responsible for multi
tasking and fast processing
Higher the better
Cache Size Works like computer’s
RAM to process data
faster
Higher the better
TDP Determines the
maximum heat
generated by the
processor under high
workload and how much cooling it needs to
perform optimally
Lower the better
Integrated GPU/APU Offer better performance
through less battery
consumption and heat
generation
NA
Generation Represents the technical
upgrades and
advancement in the
processor
Higher the better
Motherboard Socket & Chipset Compatibility Required for optimal
performance of
processor
Must be of same generation
Benchmark Scores Industry standard for
processor’s performance
Higher the better
Coolers Requires to dissipate
generated heat to keep
the system cool for
optimal performance
Small or mid-sized coolers for low wattage, i. e., 40-70 Watts
Large sized coolers for high wattage, i.e. above 70 watts
Warranty Covers processors
components’
maintenance, repair and
replacement
Higher the better
Intel vs AMD Both offers single-core
and multi-core
processors
Both are good brands
and have a name when it
comes to Central
Processing Units. However, the right one depends on the needs.

The performance of any processor depends upon some crucial internal specs, which you should not neglect while buying or comparing. So, to compare CPU performance of two or more processors, consider these specs, factors and features before choosing the one:

Number of Cores

Range: 1-8 Cores

Previously, most CPUs used to have a single core, meaning all the data processing was handled only by one core. However, now CPUs come with multiple cores, from dual-core to eight-core, to split up the tasks between the various cores for faster processing.

So how many cores do you need in a CPU? It totally depends upon your requirements. Generally, a dual-core processor is suitable to handle day-to-day work tasks, surfing, etc.

You can go for quad-core or six-core processors for extensive gaming or designing requirements like 3D video rendering and other demanding tasks. If you want to run heavy programming or 3D modeling software, first research how many cores they utilize and then you can opt for six or even eight-core processors depending upon the usage.

Clock Speed/Frequency

Range: 0-5.5 GHz

Clock speed is generally measured in Gigahertz (GHz) and represents any processor’s processing or operational speed. For example, a processor with a 2GHz clock speed indicates that it can handle/execute up to 2 billion instructions per clock/second.

So, it simply refers to how fast a processor can process instructions in a single cycle without lagging. Along with core count, clock speed significantly impacts CPU performance. For simple task processing, 2.4 GHz clock speed works fine. However, for gaming purposes, 3.5-4.0 GHz is considered good.

What is Overclocking and Maximum Clock Speed? – Should you go for it?

Every processor has a certain maximum clock speed. But in some processors, there is a feature of Overclocking that allows you to turn up the maximum clocking speed intended by the manufacturer.

Note that only “Unlocked CPUs” come with the ability to overclock and are generally more expensive than locked CPUs (cannot overclock). Processors in Intel designed for overclocking are represented by “K” in the last, for example, Intel Core i7-11700K.

So, if you think your requirements will increase significantly in upcoming years, you can go for the unlocked CPU instead of the locked ones. However, the overclocking process builds up additional heat in your CPU, so you need a better cooling system if you go for it.

Threads

Range: 2-16 Threads

While the core acts as the individual processors in the CPU, the threads in each core decide how many processes that core can handle significantly at a time. You can consider them as virtual components that divide the physical core of a processor into multiple virtual cores.

Modern CPUs generally have more threads than cores, indicating that each core can handle multiple tasks or data processing simultaneously. A single core processor can have a maximum of two threads. So, a dual-core processor comes with quad-core threads while the eight-core processor can have a maximum of 16 threads.

For better processing power, go for the CPU with hyper-threading capabilities. Clock speed, Core and Thread count together decide the processing speed of any processor.

Processor’s Cache

Range: L1 Cache – 0KB – 2 MB, L2 Cache – 256 KB – 8 MB, L3 Cache – 32 MB – 64 MB

A processor’s cache works similarly to a computer’s RAM to store temporary files/data. The bigger the processor cache size, the more cache files it can store and access quickly. Besides the main cache (L1), processors have additional L2 and L3 cache built between the CPU and RAM for alternative high speed. L2 and L3 caches take more time to access than L1.

While L1 cache is 100 times faster than your computer’s RAM, L2 cache is 25 times faster. Processors with large L2 and L3 cache sizes are generally faster and suitable for multitasking, gaming, designing and programming.

CPU temperature & Thermal Design Power (TDP)

Range: 60 Watts- 137 Watts

Every CPU has a certain optimal temperature which is decided by its thermal design power (TDP). TDP measures how much heat a processor gives off to function optically. Knowing TDP is crucial to decide how much cooling and power wattage the processor requires to avoid overheating. The lower the TDP, the less power consumption of the processor.

Especially if overclocking is your requirement, you might have to use a third-party cooling system instead of the stocked one, for which you have to check its TDP and how much power is drawn by CPU components.

Integrated GPUs (Graphic Processing Units) or APU (Accelerated Processing Units)

Range: NA

Most modern CPUs come with integrated GPUs to share the system’s memory for processing graphics and rendering videos. The benefit of integrated GPUs is that it takes less power and generates less heat to save battery.

However, the integrated GPUs can sometimes not serve you excellent graphic performance compared to a discrete CPU and GPU, especially if you are a designer or professional gamer.

In that case, AMD processors come with APUs that work similar to integrated GPUs but offer better graphic performances for gaming laptops.

Generation

Range: 1st Generation – 12th Generation

The latest versions and upgrades of the CPU come in the form of generations. The higher the generation, the more advanced the CPU’s technology. But you don’t always need the latest generation CPU to handle your tasks.

Even if you go for an older generation with more cores and threads, you will get optimal performance compared to the latest generation with low cores and threads.

For normal multitasking and browsing experience, you can go for the i3 or i5 generation with multi-cores, but for gaming, designing or extensive programming work, try to go for the i5, i7 or beyond.

Motherboard Socket & Chipset Compatibility

Range: NA

While choosing any CPU based on your requirements, don’t forget to check its socket compatibility with your motherboard. CPU sockets are available on motherboards where the CPU gets plugged, and not all sockets are compatible with all CPUs.

For example, an Intel-based CPU cannot fit with the AMD CPU socket and vice versa. Similarly, if an Intel Core i7-4770K processor is designed to function with an LGA 1150 socket, you cannot use it with an LGA 1200 socket. So, pick only the right one to avoid compatibility issues.

Compatibility of your chosen CPU with the motherboard chipset and the socket is crucial for optimal performance. As a thumb rule, you must pair the CPU with the motherboard of the same generation to avoid compatibility issues.

Benchmark

Range: Depends on the benchmark scores.

The tool also provides you with CPU benchmark scores by some reputable benchmark apps like Passmark, Geekbench 5, Cinebench R20, etc.

The CPU benchmark compare scores given by these apps are considered the industry standard for measuring the performance of different processors, graphic cards and computers. The higher the score is, the better the performance of that CPU.

Performance

The performance of any processor is determined by core & threads counts, CPU speed, Cache size and frequency. The tool compares all these aspects of various CPUs to help you pick the right one.

Coolers

Range: Small or mid-sized coolers for low wattage, i.e., 40-70 Watts, Large sized coolers for high wattage, i.e. above 70 watts

Most modern CPUs come with in-built stock coolers, which work fine for normal multitasking. However, if you want to run heavy gaming, designing or programming software or want to utilize it for overclocking, the stock cooler might not function well for you.

If looking for third-party coolers for overclocking, don’t forget to catch their compatibility with motherboard sockets.

Price

Range: $60-$37,000

Budget is the crucial aspect to look for while comparing various CPUs. Expensive doesn’t always mean good. Pay for the features you really require instead of just paying for the extra ones you won’t use. With our comparison tool, you can find the required features in a budget-friendly CPU after comparing it with the best-performing ones.

Depending upon your requirements, choose the right CPU. If your work requirement is less, you can go for a low or mid-range CPU (i3 or i5 generation). However, if your requirements are extensive, you need a high-range gaming CPU (i5 or i7 generation).

Purpose & Workload

Knowing your work requirements and load can help you choose the best CPU for you.

Home users: If you have basic work requirements like web browsing, sending emails, excel processing, etc., a basic CPU will work fine for you. In that case, you can go for either AMD Ryzen 3 or Intel Core i3 with a 2GHz Clock speed.

Startups and SMEs: If you are a freelancer or working in a startup with normal data processing needs like presentations, video calls, surfing, etc., the i3 or i5 generation is enough for you, depending upon the software you want to operate. However, if you have high-end usage like 3D modeling, heavy video rendering, etc., you can go for AMD Ryzen 5 or 7 or Intel core i5 or i7 with 2GHz or above clock speed and 64-bit RAM.

Gaming: If gaming is your main requirement, the baseline CPU is either AMD Ryzen 5 or Intel core i5 to run titles like Fortnite, PUBG, etc.

However, if you are a professional gamer who wants to run high-end games with excellent graphics quality, go for an i7 or AMD Ryzen 7 or above with an excellent cooling system.

Warranty

Range: 1-3 years

Not all brands offer the same warranty for the maintenance and repair of CPU components. So, while buying a processor, don’t forget to check the complimentary brand warranty duration to get the best price for a performance CPU.

Intel vs AMD

So, which one should you choose between Intel and AMD? Both AMD and Intel CPUs offer great performances with a very slight difference. In terms of single-core performance, Intel usually offers better performance than AMD single-core processors; however, it comes at a little expensive price.

On the other hand, for gaming purposes, AMD offers excellent performance through its multi-core processors under an affordable range to beat Intel multi-core processors. So both have something great to offer, depending upon your budget & requirements.

Types of CPU

Depending upon your usage type and budget, there are several types of CPU available in the market, like:

1. Mobile CPU

As the name indicates, these are compact CPUs generally designed for laptops and mobile devices. While they offer optimal performance, they are generally slower than the desktop and other counterparts.

2. Server CPU

Server CPUs are designed to run actively 24/7 without any lag for extensive usage, and thus, they are tested under high-temperature and high-stress conditions. They are ideal for large data processing and hosting multiple software and applications at a time but come at a high cost than mobile or desktop CPUs.

3. Desktop CPU

Unlike Server CPUs, Desktop CPUs are designed for all kinds of users to process moderate workloads. Depending upon their components, they can be used for overclocking, gaming, surfing, programming, and multiple other high-end requirements.

Desktop CPUs are generally more affordable than Server CPUs but a little more expensive than Mobile CPUs. As there are various types of desktop CPUs available in the market for different needs, you must select according to your required specifications.

Conclusion

By comparing the industry’s top processors with our comparison tool, you can get the best value CPU for your requirements under the desired price range. All you need to check is the aforementioned crucial specs and features provided to you in a simple tabular format for comparison. Compare as many processors you want to before making the final purchase to pick the right one.

Related Tools: GPU Comparison | Monitor Comparison | Motherboard Comparison | Phone Comparison |

CPU-Z Benchmark — CPU-Z VALIDATOR

Best CPU performance — 64-bit — September 2022

Intel Core i9-12900KF

Intel Core i9-12900K

Intel Core i7-12700K

Intel Core i7-12700KF

Intel Core i5-12600K

Intel Core i5-12600KF

Intel Core i9-11900K

AMD Ryzen 9 5900X

AMD Ryzen 9 5950X

Intel Core i7-11700K

AMD Ryzen 7 5800X

Intel Core i7-11700KF

Intel Core i5-11600K

AMD Ryzen 5 5600X

Intel Core i5-11600KF

Intel Core i7-11700

Intel Core i7-11700F

AMD Ryzen 7 5700G

AMD Ryzen 9 5900HX

Intel Core i5-11500

Intel Core i9-10900KF

AMD Ryzen 5 5600G

Intel Core i7-11800H

Intel Core i9-10900K

Intel Core i9-10850K

Intel Core i5-11400

Intel Core i7-10700KF

Intel Core i5-11400F

Intel Core i9-10900

Intel Core i5-11400H

AMD Ryzen 7 5800H

Intel Core i9-9900KF

Intel Core i7-9700KF

Intel Core i7-10700K

Intel Core i7-9700K

AMD Ryzen 5 5600H

Intel Core i9-9900K

Intel Core i5-10600KF

Intel Core i5-9600KF

Intel Core i5-10600K

Intel Core i7-10700

Intel Core i7-10700F

Intel Core i7-1165G7

AMD Ryzen 7 3800XT

Intel Core i7-9700F

Intel Core i7-9700

AMD Ryzen 9 3950X

Intel Core i5-9600K

AMD Ryzen 9 3900X

AMD Ryzen 5 3600XT

AMD Ryzen 7 3800X

Intel Core i7-8700K

AMD Ryzen 7 3700X

Intel Core i5-1135G7

AMD Ryzen 5 PRO 4650G

Intel Core i5-8600K

AMD Ryzen 7 5700U

AMD Ryzen 5 3600X

AMD Ryzen 7 4800H

Intel Core i7-7700K

Intel Core i7-10875H

Intel Core i5-7600K

Intel Core i7-8700

AMD Ryzen 5 3600

AMD Ryzen 5 3500X

Intel Core i3-1115G4

AMD Ryzen 5 3500

Intel Core i7-10870H

AMD Ryzen 5 4500U

AMD Ryzen 5 5500U

Intel Core i7-10750H

Intel Core i3-10105F

Intel Core i3-9100F

Intel Core i5-8500

Intel Core i7-6700K

Intel Core i3-10100

AMD Ryzen 5 4600H

Intel Core i5-10400

Intel Core i5-9400

Intel Core i3-10100F

Intel Core i5-6600K

Intel Core i5-9400F

Intel Core i5-10400F

AMD Ryzen 3 3100 4-Core

AMD Ryzen 7 2700X

Intel Core i7-4790K

Intel Core i5-10300H

Intel Core i7-9750H

Intel Core i5-8400

AMD Ryzen 5 2600X

Intel Core i7-7700

Intel Core i5-4690K

AMD Ryzen 5 3400G

Intel Core i7-8750H

AMD Ryzen 3 3200G

Intel Core i5-9300H

AMD Ryzen 5 2600

Intel Core i3-8100

Intel Core i7-10510U

Intel Core i5-7500

Intel Core i5-8300H

Intel Core i5-4670K

AMD Ryzen 5 1600X

Intel Core i7-8565U

AMD Ryzen 3 2200G

Intel Core i7-4770K

Intel Core i5-10210U

Intel Core i5-4690

Intel Core i5-1035G1

AMD Ryzen 5 2400G

Intel Core i7-4790

AMD Ryzen 7 1700X

Intel Core i7-6700

AMD Ryzen 7 2700

Intel Core i7-4770

Intel Core i5-8265U

AMD Ryzen 7 1700

AMD Ryzen 5 1600

Intel Core i3-1005G1

AMD Ryzen 5 3550H with

Intel Core i5-4590

Intel Core i5-7400

Intel Core i5-3570K

Intel Core i7-3770K

Intel Core i5-6500

Intel Xeon E3-1231 v3

Intel Core i7-8550U

Intel Core i5-4570

Intel Core i3-7100

AMD Ryzen 3 1200

Intel Core i5-2500K

Intel Core i5-3570

AMD Ryzen 7 3750H with

Intel Core i7-3770

Intel Core i7-2600K

Intel Core i7-7700HQ

Intel Core i5-8250U

Intel Core i5-7300HQ

Intel Core i5-6400

Intel Core i3-6100

AMD Ryzen 5 1400

Intel Core i5-4460

AMD Ryzen 5 3500U with

Intel Core i5-3470

Intel Xeon E5-2640 v3

Intel Xeon E5-2678 v3

AMD Athlon 3000G

Intel Core i5-4440

Intel Core i3-4170

Intel Xeon E3-1230 V2

Intel Core i5-2500

Intel Pentium G4560

Intel Core i7-2600

Intel Core i3-4160

AMD Ryzen 5 2500U with

Intel Xeon E5-2689

Intel Core i7-7500U

Intel Core i7-6700HQ

Intel Core i5-2400

Intel Xeon E5-2620 v3

Intel Core i3-4130

Intel Xeon E5-2650 v2

Intel Core i5-3330

Intel Core i5-7200U

Intel Core i3-3240

Intel Core i7-6500U

Intel Core i3-3220

Intel Core i5-6300U

Intel Xeon E5450

Intel Core i3-2120

Intel Core i5-3230M

Intel Core i3-2100

Intel Core i5-6200U

Intel Core 2 Duo E8400

Intel Core i5 750

Intel Core i5-5200U

Intel Core 2 Quad Q9550

Intel Core i5-2520M

Intel Core 2 Duo E7500

Intel Core i5 650

Intel Core i5-3210M

Intel Core i7 920

AMD FX -8350

Intel Core i5-2450M

Intel Core 2 Quad Q9400

AMD FX -4300

AMD FX -8320

AMD FX -6300

Intel Core i5-2410M

Intel Core i5-4210U

Intel Core 2 Quad Q6600

AMD FX -8300

Intel Core i3-7020U

Pentium E5200

Intel Core i5-4200U

Intel Core i3-3110M

Intel Core i3-5005U

Intel Core i3-6006U

AMD Phenom II X4 955

Intel Core i3-4005U

Compare CPU: Best CPU for gaming 2022

What is the best processor for gaming?

If you want a cheap processor at a low price, then we track the top deals, sales, Prime offers and biggest discounts on Amazon to find the best budget gaming CPU for the money.

241

Processors found

See more

Network N earns commission from qualifying purchases via Amazon Associates and other programs.

Price

AnyUnder $500Under $300Under $200Under $100

Brand

AnyAMDIntel

CPU Rating

AnyUnder 80%Under 70%Under 60%Under 50%

Cores

Any16 cores8 cores6 cores4 cores2 cores

Filter by game

Min = game will run
Rec = game will run well

  • GTA 5
  • FIFA 23
  • Valorant
  • Elden Ring
  • Marvel’s Spider-Man Remastered
  • Red Dead Redemption 2
  • Call of Duty: Warzone
  • Fortnite
  • Genshin Impact
  • Apex Legends
  • CSGO
  • Microsoft Flight Simulator
  • Minecraft
  • Stray
  • FIFA 22
  • Fall Guys
  • Tower of Fantasy
  • Farthest Frontier
  • Cult of the Lamb
  • MultiVersus
AMD Ryzen 9 3900XT

Available with Prime Delivery

$476 (Save $23)
AMD
100% Rating
12 cores
Min Rec
Intel Core i9-10940X
$819 (Save $131)
Intel
100% Rating
14 cores
Min Rec
AMD Ryzen 9 3900X

Available with Prime Delivery

$415 (Save $70)
AMD
99% Rating
12 cores
Min Rec
Intel Core i9-10900X

Available with Prime Delivery

$598. 88 (Save $83)
Intel
99% Rating
10 cores
Min Rec

PC CPU Performance Comparisons — Including Athlon 64 and Core 2 Duo Benchmark Results



Summary

The document contains tables of CPU performance from 80486 to Intel Core i7 and AMD Phenom II,
including speed via caches and RAM derived from my benchmarks and results reports, which are available
from Compuserve PC Hardware Forum and my web site.

More Historic Data

In analysing results of the different benchmarks, in virtually all cases (except for RAM), CPU speed, including using data in cache, is shown to be proportional to CPU MHz for a particular type of processor. So it has been decided to show the MHz of available CPUs and provide simple tables with one set of numbers for each type of CPU. For results depending on memory speed, results are provided for a range of RAM types.

As the number and type of instructions used in the benchmarks is known, performance results can be easily converted to Millions of Instructions Per Second (MIPS) or Millions of Floating Point Operations Per Second (MFLOPS). Comparison numbers represent percentages of MIPS or MFLOPS divided by CPU MHz.

Contents


Introduction

Benchmark results used

Intel CPU Characteristics





Pentium, Celeron, Xeon Pentium 4 Class Pentium M Class Core 2 Mobile
Core 2 DeskTop/Server 2008 Processors 2009 Processors 2010 Processors
2011 Processors 2012 Processors 2013 Processors 2014 Processors
Turbo Boost — All

AMD CPU Characteristics





Older CPUs Athlon 64 Athlon 64 X2, X3, X4 Mobile Athlon 64, Turion
Sempron Opteron 1 and 2 Core 2008 Processors 2009 Processors
2010 Processors 2011 Processors 2012 Processors 2013 Processors
2014 Processors Turbo Boost — All

Performance Comparisons




CPU/L1 Cache Speed 32 bit integers 32/64 bit floating point SSE, SSE2 floating point
CPU/L2 Cache Speed 32 bit integers 32/64 bit floating point SSE, SSE2 floating point
RAM Speed 32 bit integers 32/64 bit floating point SSE, SSE2 floating point


1.

CPU Performance Tables — Introduction

In analysing results of the different benchmarks, in virtually all
cases, CPU speed, including using data in cache, is shown to be
proportional to CPU MHz for a particular type of processor. So it
has been decided to show the MHz of available CPUs and provide simple
tables with one set of numbers for each type of CPU. As the number
and type of instructions used in the benchmarks is known, performance
results can be easily converted to Millions of Instructions Per
Second (MIPS) or Millions of Floating Point Operations Per Second
(MFLOPS). Comparison numbers represent percentages of MIPS or MFLOPS
divided by CPU MHz.

CPUs can have more than one Integer or Floating Point Pipeline where
each might be able to produce one result per Hz. The first Intel Pentium 4 Integer
Pipelines could execute two instructions per cycle.
Then there are MMX, SSE and SSE2 Single Instruction Multiple Data functions,
using 64 or 128 byte registers, where 2 to 4 calculations can be carried out
simultaneously. Furthermore, with floating point, linked add and multiply
instruction can produce two results per clock cycle for each register element
(SSE up to eight 32 bit calculations per clock). The net result is that
the percentage calculations can be greater than 100.

Overall processor performance depends on the type/version and speed
of CPU and cache sizes along with memory speed, which is dependent on
the system board used. No attempt is made to provide an overall
performance rating, the overall aim being to show some strengths and
weaknesses of each type of processor.

The introduction of the Intel i7 processor leads to a major complication as it
does not necessarily run at a constant GHz speed. In the event of only one
processor being used, and it is not too hot, a Turbo Boost function increases
CPU GHz. A reducing speed increase using 2, 3 or 4 CPUs can also be applied
(see Turbo Boost from Contents table). In the results tables, two percentage
calculations are shown based on normal and boosted speed.

Some information on Cyrix CPU Characteristics is also included.

Note that these benchmarks reflect performance of one CPU on multi-core processors.

Back To Contents List

2. CPU Characteristics

Some of the following have been gathered from benchmark results and magazines
and may not be completely accurate. Mobile CPUs have the same speeds
using mains power but might have diferent size L2 caches and slower RAM.

A special CPUID assembly code instruction enable details of processor
characteristics to be obtained including model codes.
These codes were originally three hexadecimal digits known as Family, Model and
Stepping, the latter digit showing changes for minor bug fixes. An extra
Extended Model digit was included later. Different types of processor, such as
Pentium, Celeron and Xeon, have the same Family and Model codes, which invariably
means that the core CPUs have identical performance characteristics (cache sizes
and connectivity will be different). Later, CPUID functions produce the processor
marketing name and model.

Intel model codes are readily available via their Processor Spec Finder but
the equivalent AMD pages only show marketing model details. In most cases, the
model codes can be found in FAB51 Reference Guides or PDF documents for Processor
Revision Guides or Power Data Sheets.

Back To Contents List

Intel





 Older CPUs

 CPU             MHz   MHz KB L1  KB L2     Type L2     FSB  CPUID
                From    To Cache  Cache       Cache     MHz  Model 

 Pentium          75   200    8  256-512    External  50-66  51x-52x   
 Pentium Pro     180   200    8  256-512    Internal  60-66  61x   
 Pentium MMX     166   233   16  256-512    External     66  58x 

 Pentium II      233   333   16      512  Half Speed     66  63x-65x 
 Pentium II      350   450   16      512  Half Speed    100  65x

 PII Xeon        400   450   16      512  Full Speed    100  652,653
 PII Xeon        400   450   16     1024  Full Speed    100  652,653
 PII Xeon        450         16     2048  Full Speed    100  653

 Pentium III     450   600   16      512  Half Speed    100  67x 
 Pentium IIIB    533   600   16      512  Half Speed    133  67x
 Pentium IIIE    550  1100   16      256  Full Speed    100  68x
 Pentium IIIEB   533  1330   16      256  Full Speed    133  68x
 Pentium IIIT   1000  1400   16      256  Full Speed    133  6Bx 
 Pentium IIIT    800  1400   16      512  Full Speed    133  6Bx 

 PIII Xeon       500   550   16 512-2048  Full Speed    100  672,673
 PIII Xeon       600  1000   16      256  Full Speed    133  68x
 PIII Xeon       700         16     1024  Full Speed    100  6A0
 PIII Xeon       700         16     2048  Full Speed    100  6A0,6A1

 Celeron         266   300   16        0        None     66  65x
 Celeron A       300   533   16      128  Full Speed     66  66x
 Celeron 2       533   766   16      128  Full Speed     66  68x
 Celeron 3       800  1100   16      128  Full Speed    100  68x
 Celeron 4T     1000  1400   16      256  Full Speed    100  6Bx

 Celeron M       266   466   16      128  Full Speed     66  66x
 Celeron M       667         16      128  Full Speed     66  68x
 Celeron M       400   900   16      128  Full Speed    100  68x
 Celeron M       733   933   16      128  Full Speed    133  68x
 Celeron M       650         16      256  Full Speed    100  6Bx
 Celeron M       733  1333   16      256  Full Speed    133  6Bx

         M = Mobile

                     Back To Contents List


 All the following have full speed L2 cache

 Pentium 4 Class

 CPU             MHz   MHz KB L1  KB L2     FSB  CPUID
                From    To Cache  Cache     MHz  Model

 Pentium 4      1300  2000    8      256    400  F0x-F1x  
 Pentium 4N     1600  2800    8      512    400  F2x  
 Pentium 4N2    2260  3060    8      512    533  F2x  
 Pentium 4N3    2400  3400    8      512    800  F2x  
 Pentium 4EE    3200  3400    8    512+L3#  800  F2x  
 Pentium 4EE    3460  3730    8    512+L3# 1066  F2x-F4x 
 Pentium 4E     2400  2800   16     1024    533  F3x-F4x
 Pentium 4E     2800  3800   16     1024    800  F3x-F4x  
 P4 505-519     2666  3060   16     1024    533  F3x-F4x
 P4 520-571     2800  3800   16     1024    800  F3x-F4x
 P4 620-672     2800  3800   16     2048    800  F4x
 P4 631-661     3000  3600   16     2048    800  F6x

 Xeon           1400  2000    8      256    400  F0x-F1x
 Xeon MP 1 CPU  1400  2800    8    512+L3@  400  F1x-F2x   
 Xeon           1800  2800    8    512+L3@  400  F2x
 Xeon           2000  3200    8    512+L3@  533  F2x
 Xeon           2800  3800   16   1024+L3$  800  F3x-F4x
 Xeon           3166  3666   16   1024+L3&  667  F4x

 P4 D 805       2666        16*2   1024*2   533  F47
 P4 D 820-840   2800  3200  16*2   1024*2   800  F47,F44
 P4 D 920-960   2800  3600  16*2   2048*2   800  F6x

 P4EE 840       3200        16*2   1024*2   800  F44
 P4EE 955-965   3460  3730  16*2   2048*2  1066  F62,F64

 Xeon 7020      2666        16*2   1024*2   667  F48
 Xe 7110N-7140N 2500  3333  16*2 1024*2+L3* 667  F68
 Xe 5020-5050   2500  3000  16*2   2048*2   667  F64
 Xeon 7040      3000        16*2   2048*2   667  F48
 Xeon 7030      2800        16*2   2048*2   800  F48
 Xe 7110M-7140M 2600  3400  16*2 2048*2+L3* 800  F68
 Xeon 7041      3000        16*2   2048*2   800  F48
 Xe 5060-5080   3200  3733  16*2   2048*2  1066  F64

 XEO 7130N      3166        16*2    8192    667  F68
 XEO 7130M      3200        16*2    8192    800  F68
 XEO 7140N      3333        16*2   16384    667  F68
 XEO 7140M      3400        16*2   16384    800  F68

 Pentium 4 M    1400  2600    8      512    400  F2x
 Pentium 4 M    2400  3200    8      512    533  F29
 Pentium 4 M    2800  3200   16     1024    533  F34
 P4 M 548       3333         16     1024    533  F41  

 Celeron        1700  1800    8      128    400  F1x 
 Celeron        2000  2800    8      128    400  F2x 
 Cel D 310-355  2130  3333   16      256    533  F3x-F4x
 Cel D 347-365  3060  3600   16      512    533  F6x

 Celeron M      1400  2400    8      256    400  F29

 L3# 2 MB, L3@ top models 1 or 2 MB, L3$ 0, 2 or 4 MB
 L3& 0, 4 or 8 MB, L3* 4, 8 or 16 MB,
 P4 D = Dual Core, Celeron D = 1 Core, M = Mobile
     
                     Back To Contents List


 Pentium M Class

 CPU             MHz   MHz KB L1  KB L2     FSB  CPUID
                From    To Cache  Cache     MHz  Model

 PM              900  1700   32     1024    400  695
 PM  733-778    1100  2100   32     2048    400  6D6,6D8
 PM  730-780    1600  2267   32     2048    533  6D8

 PDM T2060-2130 1600  1860  32*2    1024    533  6EC

 CS  T1350      1860         32     2048    533  6E8
 CS  U1300-1500 1060  1333   32     2048    533  6EC,6E8
 CS  T1300-1400 1666  1833   32     2048    667  6EC,6E8

 CM              600   800   32      512    400  695      
 CM   353-373    900  1000   32      512    400  6D6       
 CM   310-340   1200  1500   32      512    400  695      
 CM   350-390   1300  1700   32     1024    400  6D6,6D8      
 CM   420-450   1060  2000   32     1024    533  6EC,6E8

 CDM T2050-2450 1600  2000  32*2    2048    533  6E8
 CDM U2400-2500 1060  1200  32*2    2048    533  6E8
 CDM L2300-2500 1500  1830  32*2    2048    667  6EC,6E8
 CDM T2300-2700 1666  2333  32*2    2048    667  6EC,6E8

 PM = Pentium M
 PDM = Pentium Dual Core Mobile
 CM = Celeron Mobile 
 CS = Core Solo
 CDM = Core Duo Mobile

                     Back To Contents List


 Core 2 Duo Class Mobile

 CPU             MHz   MHz KB L1   KB L2    FSB  CPUID
                From    To Cache   Cache    MHz  Model

 C2S U2100-2200 1060  1200   32     1024    533  ??

 CM    520      1600         32     1024    533  6F6

 PDM T2310-2390 1460  1860  32*2    1024    533  6FD

 CM  SU2300     1200        32*2    1024    800  6FD
 CM  T1400-1500 1730  1860  32*2     512    533  6FD
 CM  T1600-1700 1666  1830  32*2    1024    667  6FD
 CM  T3000-3100 1800  1900  32*2    1024    800

 C2M U7500-7600 1066  1333  32*2    2048    533  6F2,6FD
 C2M T5200-5300 1600  1860  32*2    2048    533  6F2,6F6
 C2M T5250-5750 1666  1500  32*2    2048    667  6F2,6F6,6FD
 C2M L7200-7400 1333  1500  32*2    4096    667  6F6
 C2M T7200-7600 2000  2333  32*2    4096    667  6F6
 C2M T5470            1600  32*2    4096    800  6FD
 C2M T7100-7250 1800  2000  32*2    2048    800  6FD
 C2M L7300-7500 1400  1600  32*2    4096    800  6FA
 C2M T7300-7800 2000  2600  32*2    4096    800  6FA,6FB

 CXM X7800-7900 2600  2800  32*2    4096    800  6FA-6FB

 C2S = Core 2 Solo Mobile
 CM  = Celeron Mobile
 PDM = Pentium Dual Core Mobile
 C2M = Core 2 Duo Mobile
 CXM = Core 2 Duo Extreme Mobile

                     Back To Contents List


 Core 2 Class DeskTop and Server

 CPU             MHz   MHz KB L1   KB L2    FSB  CPUID
                From    To Cache   Cache    MHz  Model

 Cel  420-450   1600  2193   32      512    800  661

 CeD E1200-1400 1600  2000  32*2     512    800  6FD

 PDC E2140-2200 1600  2400  32*2    1024    800  6F2,6FB,6FD

 C2D E4300-4700 1800  2600  32*2    2048    800  6F2,6FB,6FD
 C2D E6300-6400 1860  2130  32*2    2048   1066  6F2,6F6
 C2D E6320-6700 1860  2666  32*2    4096   1066  6F6
 C2D E6540-6850 2333  3000  32*2    4096   1333  6FB

 C2E X6800      2930        32*2    4096   1066  6F6

 XEO  3040-3050 1860  2133  32*2    2048   1066  6F2,6F6
 XEO  5110-5138 1600  2133  32*2    4096   1066  6F6,6FB
 XEO  3060-3070 2400  2666  32*2    4096   1066  6F6
 XEO  3065-3085 2333  3000  32*2    4096   1333  6FB
 XEO  5130-5160 2000  3000  32*2    4096   1333  6F6,6FB
 XEO E7210-7220 2400  2930  32*2    8192   1066  6FB

 C2Q Q6600-6700 2400  2666  32*4    8192   1066  6F7,6FB

 QXE  6700-6800 2666  2930  32*4    8192   1066  6F7,6FB
 QXE  6850      3000        32*4    8192   1333  6FB

 XEO E7310-7320 1600  2133  32*4    4096   1066  6FB
 XEO E7330      2400        32*4    6144   1333  6FB

 XEO E5310-5320 1600  1860  32*4    8192   1066  6F7,6FB
 XEO E7340      2400        32*4    8192   1066  6FB
 XEO L7345      1860        32*4    8192   1066  6FB
 XEO X3210-3230 2133  2666  32*4    8192   1066  6F7,6FB
 XEO X7350      2930        32*4    8192   1066  6FB
 XEO L5310-5320 1600  1866  32*4    8192   1066  6F7
 XEO E5335-5345 2000  2333  32*4    8192   1333  6F7,6FB
 XEO L5335      2000        32*4    8192   1333  6FB
 XEO X5355-5365 2666  3000  32*4    8192   1333  6F7,6FB

 Cel = Celeron
 CeD = Celeron Dual Core
 PDC = Pentium Dual Core Desktop
 C2D = Core 2 Duo
 C2E = Core 2 Extreme
 C2Q = Core 2 Quad
 QXE = Core 2 Extreme Quad
 XEO = Xeon

                     Back To Contents List

 

2008 Processors

CPU Cores MHz MHz KB L1 KB L2 KB L3 Bus Mem CPUID From To Cache Cache Cache GT/s GB/s Model
Atom 230 1+H 1600 24 512 106C2 Atom D 330 2+H 1600 2x24 2x512 106C2 Atom M N270-280 1+H 1600 1666 24 512 2. 5 106C2 Atom M Z510 1 1100 24 512 106C2 Atom M Z510P-530P 1+H 1100 1600 24 512 106C2 Atom M Z510PT-530PT 1+H 1100 1333 24 512 106C2 Atom M Z500-Z540 1+H 800 1866 24 512 106C2 C2D E7200-7600 2 2533 3066 2x32 3072 10676,7A C2D E8190-8600 2 2666 3333 2x32 6144 10676,7A C2D M P7350-7570 2 2000 2266 2x32 3072 10676 C2D M P8400-8800 2 2266 2666 2x32 3072 10676 C2D M P9500-9700 2 2533 2800 2x32 6144 10676,7A C2D M SL9300-9600 2 1600 2133 2x32 6144 10676,7A C2D M SP9300-9600 2 2133 2533 2x32 6144 10676,7A C2D M SU9300-9600 2 1200 1600 2x32 3072 10676,7A C2D M T5870 2 2000 2x32 2048 10676 C2D M T8100-8300 2 2100 2400 2x32 3072 10676 C2D M T9300-9900 2 2500 3066 2x32 6144 10676,7A C2S M SU3300-3500 1 1200 1400 32 3072 10676,7A C2Q Q8200-8400 4 2333 2666 4x32 2x2048 10677,7A C2Q Q9300-9500 4 2500 2833 4x32 2x3072 10676,77,7A C2Q Q9450-9650 4 2666 3000 4x32 2x6144 10677,7A C2QE QX9770-9775 4 3200 4x32 2x6144 10676,77 C2Q M Q9000 4 2000 4x32 6144 10676 C2Q M Q9100 4 2266 4x32 12288 1067A C2QE M QX9300 4 2533 4x32 12288 1067A C2DE M X9000-9100 2 2800 3066 2x32 6144 10676 Pen D E5200-5300 2 2500 2600 2x32 2048 10676,7A Pen D E6500 2 2933 2x32 2048 1067A XEO D E3110-3120 2 3000 3166 2x32 6144 10676,7A XEO Q X3320-3330 4 2500 2666 4x32 6144 10676,7A XEO Q X3350-3380 4 2666 3000 4x32 12288 10676,7A XEO D E5205-5220 2 1866 2333 2x32 6144 10676,7A XEO Q E5405-5472 4 2000 3000 4x32 12288 10676,7A XEO D L5215-5240 2 1866 3000 2x32 6144 10676,7A XEO Q L5410-5430 4 2333 2666 4x32 12288 10676,7A XEO D X5260-5272 2 3333 3400 2x32 6144 10676,7A XEO Q X5450-5492 4 3000 3400 4x32 12288 10676,7A i7 QT 920-940 4+H 2666 2933 4x32 4x256 8192 4. 8 25.6 106A4,A5 i7E QT 965 4+H 3200 4x32 4x256 8192 6.4 25.6 106A4 M = Mobile D = Dual Q = Quad E = Extreme Pen = Pentium C2 = Core 2 XEO = Xeon i7 = Core i7 H = Hyperthreading T See Turbo Boost Back To Contents List

2009 Processors

CPU Cores MHz MHz KB L1 KB L2 KB L3 Bus Mem CPUID /HTs From To Cache Cache Cache GT/s GB/s Model
Atom M Z550-Z560 1+H 2000 2133 24 512 106C2 C2D M T6400-6670 2 2000 2200 2x32 2048 10676 C2Q Q8200S-8400 4 2333 2666 4x32 2x2048 1067A C2Q Q9400S-9505 4 2666 2833 4x32 2x2048 1067A C2Q Q9550S 4 2833 4x32 2x6144 1067A Cel E3200-3300 2 2400 2500 2x32 1024 1067A Cel M 900-925 1 2200 2300 32 1024 1067A Cel M SU2300 2 1200 2x32 1024 Pen D E5400 2 2700 2x32 2048 1067A Pen D E6300 2 2800 2x32 2048 1067A Pen D E6500K 2 2933 2x32 2048 1067A Pen MD T4200-4500 2 2000 2300 2x32 1024 1067A XEO D L3110 2 3000 2x32 6144 1067A XEO Q L3360 4 2833 4x32 12288 1067A XEO Q L3426 4+H 1866 4x32 4x256 8192 2. 5 21.0 106E5 XEO Q W3520-3565 4+H 2666 3466 4x32 4x256 8192 4.8 25.6 106A5 XEO Q W3570-3580 4+H 3466 3600 4x32 4x256 8192 6.4 32.0 106A5 XEO Q X3430-3480 4+H 2400 3066 4x32 4x256 8192 2.5 21.0 106E5 XEO D E5502-5503 2 1866 2000 2x32 2x256 4096 4.8 19.2 106A5 XEO Q E5504-5507 4 2000 2266 4x32 4x256 4096 4.8 19.2 106A5 XEO Q E5520-5540 4+H 2266 2533 4x32 4x256 4096 5.9 25.6 106A5 XEO Q L5506 4 2133 4x32 4x256 4096 4.8 19.2 106A5 XEO Q L5520-5530 4+H 2266 2400 4x32 4x256 8192 5.9 25.6 106A5 XEO Q W5580-5590 4+H 3200 3333 4x32 4x256 8192 6.4 32.0 106A5 XEO Q X5550-5570 4+H 2666 2933 4x32 4x256 8192 6.4 32.0 106A5 i5 QT 750 4 2666 4x32 4x256 8192 2.5 21.0 106E5 i7 QT 920-980 4+H 2666 3333 4x32 4x256 8192 4. 8 25.6 106A5 i7 QT 860-880 4+H 2800 3333 4x32 4x256 8192 2.5 21.0 106E5 i7E QT 975 4+H 3333 4x32 4x256 8192 6.4 25.6 106A5 i7 MQT 820QM-840 4+H 1733 1860 4x32 4x256 8192 2.5 21.0 106E5 i7 MQT 720QM-740 4+H 1600 1733 4x32 4x256 6144 2.5 21.0 106E5 M = Mobile D = Dual Q = Quad E = Extreme Pen = Pentium Cel = Celeron C2 = Core 2 XEO = Xeon i5 = Core i5 i7 = Core i7 H = Hyperthreading T See Turbo Boost Back To Contents List

2010 Processors

CPU Cores MHz MHz KB L1 KB L2 KB L3 Bus Mem CPUID From To Cache Cache Cache GT/s GB/s Model
Atom D410-D425 1+H 1666 1800 24 512 2.5 6.4 106CA Atom D D510-D525 2+H 1666 1800 2x24 2x512 2. 5 6.4 106CA Atom M N450-N475 1+H 1666 1830 24 512 2.5 106CA Atom MD N550-570 2+H 1500 1666 2x24 2x512 2.5 106CA Cel D E3400-3500 2 2600 2700 2x32 1024 1067A Cel MD T3300-3500 2 1666 2100 2x32 1024 1067A Cel MD P4500-4600 2 1866 2000 2x32 2x256 2048 2.5 20652 Cel MD U3400-3600 2 1066 1200 2x32 2x256 2048 2.5 20655 Pen D E5500-5800 2 2800 3000 2x32 2048 1067A Pen D E6600-6800 2 3066 3333 2x32 2048 1067A Pen MD U5400-5600 2 1200 1333 2x32 2x256 3072 2.5 12.8 20655 Pen MD P6000-6300 2 1860 2266 2x32 2x256 3072 2.5 17.1 20655 i3 D 530- 560 2+H 2933 3333 2x32 2x256 4096 2.5 21.0 20652,55 i3 MD 330M-390 2+H 2130 2x32 2x256 3072 2. 5 17.1 20652,55 i3 MD 330UM-380 2+H 1200 1333 2x32 2x256 3072 2.5 12.8 20655 i5 QT 750S-760 4 2400 2800 4x32 4x256 8192 2.5 106E5 i5 DT 650-680 2+H 3200 3600 2x32 2x256 4096 20652,55 i5 MDT 430M-580 2+H 2260 2660 2x32 2x256 3072 2.5 17.1 20652,55 i5 MDT 539UM-560 2+H 1200 1333 2x32 2x256 3072 2.5 12.8 20655 i7 QT 860S,870S 4+H 2533 2666 4x32 4x256 8192 2.5 21.0 106E5 i7 QT 875,880 4+H 2933 3066 4x32 4x256 8192 2.5 21.0 106E5 i7 QT 970,980 6+H 3200 3333 6x32 6x256 12288 4.8 25.6 i7E T 980X 6+H 3333 6x32 6x256 12288 6.4 25.6 206C1,C2 i7 MDT 610-620 2+H 2533 2800 2x32 2x256 4096 2.5 17.1 20652,55 i7 MDT 620LM-660 2+H 2000 2260 2x32 2x256 4096 2.5 12.8 20652,55 i7 MDT 620UM-680 2+H 1066 1466 2x32 2x256 4096 2. 5 12.8 20652,55 XEO D L3406 2 2266 2x32 2x256 4096 2.5 17.0 20652 XEO S W3670 6+H 3200 6x32 6x256 12288 4.8 25.6 206C1,C2 XEO S W3680-3690 6+H 3333 3466 6x32 6x256 12288 6.4 32.0 206C1,C2 XEO Q E5620-5640 4+H 2400 2666 4x32 4x256 12288 4.8 25.6 206C2 XEO S E5645 6+H 2400 6x32 6x256 12288 5.9 32.0 206C2 XEO Q L5609 4 1866 4x32 4x256 12288 4.8 19.2 206C1.C2 XEO Q L5618-5630 4+H 1866 2133 4x32 4x256 12288 5.9 25.6 206C2 XEO S L5638-5640 6+H 2000 2266 6x32 6x256 12288 5.9 32.0 206C2 XEO Q X5667 4+H 3066 4x32 4x256 12288 6.4 32.0 206C2 XEO S X5650-5680 6+H 2666 3333 6x32 6x256 12288 6.4 32.0 206C0-C2 XEO Q X5677 4+H 3466 4x32 4x256 12288 6.4 32.0 206C2 XEO Q E6510 4+H 1733 4x32 4x256 12288 4. 8 206E6 XEO S E6540 6+H 2000 6x32 6x256 18432 6.4 206E6 XEO U X6550 8+H 2000 8x32 8x256 18432 6.4 206E6 XEO QT E7520 4+H 1866 4x32 4x256 18432 4.8 206E6 XEO ST E7530 6+H 1866 6x32 6x256 12288 5.86 206E6 XEO ST E7540 6+H 2000 6x32 6x256 18432 6.4 206E6 XEO ST L7545 6+H 1866 6x32 6x256 18432 5.86 206E6 XEO UT L7555 8+H 1866 8x32 8x256 24576 5.86 206E6 XEO ST X7542 6+H 2666 6x32 6x256 18432 5.86 206E6 XEO UT X7560 8+H 2267 8x32 8x256 24576 6.4 206E6 M = Mobile D = Dual Q = Quad S = Six Way U = Eight Way E = Extreme Pen = Pentium Cel = Celeron XEO = Xeon i3 = Core i3 i5 = Core i5 i7 = Core i7 H = Hyperthreading T See Turbo Boost Back To Contents List

2011 Processors

CPU Cores MHz MHz KB L1 KB L2 KB L3 Bus Mem CPUID From To Cache Cache Cache GT/s GB/s Model
Atom MD N2600-2800 2+H 1600 1860 2x24 2x512 2. 5 30661 Atom D D2500 2 1860 2x24 2x512 2.5 6.4 30661 Atom D D2700 2+H 2130 2x24 2x512 2.5 6.4 30661 Cel G440 1 1600 32 256 1024 5.0 17.0 206A7 Cel G460 1+H 1800 32 256 1536 5.0 17.0 206A7 Cel D G530-540 2 2000 2500 2x32 2x256 2048 5.0 17.0 206A7 Cel D G530T 2 2000 2x32 2x256 2048 5.0 17.0 206A7 Cel M 787-797 1 1300 1400 32 256 1536 5.0 206A7 Cel MD 847-867 2 1100 1300 2x32 2x256 2048 5.0 206A7 Cel M B710 1 1600 32 256 1536 5.0 206A7 Cel MD B800-840 2 1500 1900 2x32 2x256 2048 5.0 206A7 Pen D G6950-6960 2 2800 2933 2x32 2x256 3072 2.5 17.0 20652 Pen D G620T-630T 2 2200 2300 2x32 2x256 3072 5. 0 21.0 206A7 Pen D G620-632 2 2600 2700 2x32 2x256 3072 5.0 21.0 206A7 Pen D G840-860 2 2800 3000 2x32 2x256 3072 5.0 21.0 206A7 Pen MD 957-967 2 1200 1300 2x32 2x256 2048 5.0 21.3 206A7 Pen MD B940-960 2 2000 2200 2x32 2x256 2048 5.0 21.3 206A7 i3 D 2100-2130 2+H 3100 3400 2x32 2x256 3072 5.0 21.0 206A7 i3 MD 2310M-2350 2+H 2100 2300 2x32 2x256 3072 5.0 21.3 206A7 i3 MD 2357M-2367 2+H 1300 1400 2x32 2x256 3072 5.0 21.3 i5 QT 2300-2500 4 2800 3300 4x32 4x256 6144 5.0 21.0 206A7 i5 DT 2390T 2+H 2700 2x32 2x256 3072 5.0 21.0 206A7 i5 QT 2400S-2500 4 2500 2700 4x32 4x256 6144 5.0 21.0 206A7 i5 QT 2500K 4 3300 4x32 4x256 6144 5.0 21.0 206A7 i5 MDT 2410M-2557 2+H 1400 2600 2x32 2x256 3072 5. 0 21.3 206A7 i7 QT 2600-2700 4+H 2800 3500 4x32 4x256 8192 5.0 21.0 206A7 i7 ST 3930K 6+H 3200 6x32 6x256 12288 5.0 51.2 206D6 i7E ST 990X 6+H 3460 6x32 6x256 12288 6.4 25.6 206C2 i7E ST 3960X 6+H 3333 6x32 6x256 15360 5.0 51.2 206D6 i7 MQT 2630QM-2675 4+H 2000 2200 4x32 4x256 6144 5.0 21.3 206A7 i7 MQT 2720QM-2760 4+H 2200 2400 4x32 4x256 6144 5.0 25.6 206A7 i7 MQT 2710QE 4+H 2100 4x32 4x256 6144 5.0 25.6 206A7 i7 MQT 2820QM-2860 4+H 2300 2500 4x32 4x256 8192 5.0 25.6 206A7 i7 MDT 2617M-2649M 2+H 1500 2800 2x32 2x256 4096 5.0 21.3 206A7 XEO DT E3-1220L 2+H 2200 2x32 2x256 3072 5.0 21.0 206A7 XEO QT E3-1220 4 3100 4x32 4x256 8192 5.0 21.0 206A7 XEO QT E3-1225 4 3100 4x32 4x256 6144 5. 0 21.0 206A7 XEO QT E3-1230-1290 4+H 3200 3600 4x32 4x256 8192 5.0 21.0 206A7 XEO QT E3-1235-1275 4+H 3200 3400 4x32 4x256 8192 5.0 21.0 206A7 XEO QT E3-1260L 4+H 2400 4x32 4x256 8192 5.0 21.0 206A7 XEO QT E3-1275 4+H 3400 4x32 4x256 8192 5.0 21.0 206A7 XEO Q E5603-5607 4 1600 2133 4x32 4x256 8192 4.8 25.6 206C2 XEO S E5649 6+H 2400 6x32 6x256 12288 5.9 32.0 206C2 XEO Q X5647 4+H 2933 4x32 4x256 12288 5.9 25.6 206C2 XEO Q X5672 4+H 3200 4x32 4x256 12288 6.4 32.0 206C2 XEO S X5675 6+H 3066 6x32 6x256 12288 6.4 32.0 206C2 XEO Q X5687 4+H 3600 4x32 4x256 12288 6.4 32.0 206C2 XEO S X5690 6+H 3466 6x32 6x256 12288 6.4 32.0 206C2 XEO S E7-2803 6+H 1733 6x32 6x256 18432 4. 8 206F2 XEO UT E7-2820 8+H 2000 8x32 8x256 18432 5.9 206F2 XEO UT E7-2830 8+H 2133 8x32 8x256 24576 6.4 206F2 XEO VT E7-2850-2860 10+H 2000 2266 10x32 10x256 24576 6.4 206F2 XEO VT E7-2870 10+H 2400 10x32 10x256 30720 6.4 206F2 XEO ST E7-4807 6+H 1866 6x32 6x256 18432 4.8 206F2 XEO UT E7-4820 8+H 2000 8x32 8x256 18432 5.9 206F2 XEO UT E7-4830 8+H 2133 8x32 8x256 24576 6.4 206F2 XEO VT E7-4850-4860 10+H 2000 2266 10x32 10x256 24576 6.4 206F2 XEO VT E7-4870 10+H 2400 10x32 10x256 30720 6.4 206F2 XEO UT E7-8837 8 2666 8x32 8x256 24576 6.4 206F2 XEO UT E7-8830 8+H 2133 8x32 8x256 24576 6.4 206F2 XEO VT E7-8850-8860 10+H 2000 2266 10x32 10x256 24576 6. 4 206F2 XEO VT E7-8870 10+H 2400 10x32 10x256 30720 6.4 206F2 XEO VT E7-8867L 10+H 2133 10x32 10x256 30720 6.4 206F2 M = Mobile D = Dual Q = Quad S = Six Way U = Eight Way V = Ten Way E = Extreme Pen = Pentium Cel = Celeron XEO = Xeon i3 = Core i3 i5 = Core i5 i7 = Core i7 H = Hyperthreading T See Turbo Boost Back To Contents List

2012 Processors

CPU Cores MHz MHz KB L1 KB L2 KB L3 Bus Mem CPUID From To Cache Cache Cache GT/s GB/s Model
Atom D D2550 2+H 1860 2x24 2x512 2.5 6.4 30661 Atom Z2460-2480 1+HG 1600 2000 24 512 6.4 Atom Z2760 1+HG 1800 24 512 6. 4 30651 Cel G465 1+HG 1900 32 256 1536 5.0 17.0 206A7 Cel D G550-555 2+G 2600-2700 2x32 2x256 2048 5.0 17.0 206A7 Cel D G540T-550T 2+G 2100-2200 2x32 2x256 2048 5.0 17.0 206A7 Cel M 797 1+G 1400 32 256 1536 5.0 21.3 206A? Cel MT 807 1+G 1500 32 256 1536 5.0 21.3 206A? Cel MD 867-887 2+G 1300 1500 2x32 2x256 2048 5.0 21.3 206A? Cel M B720 1+G 1700 32 256 1536 5.0 21.3 206A7 Cel MD B815-830 2+G 1600 1800 2x32 2x256 2048 5.0 21.3 206A7 Pen D G645 2+G 2900 2x32 2x256 3072 5.0 17.0 206A7 Pen D G645T 2+G 2500 2x32 2x256 3072 5.0 17.0 206A7 Pen D G860T 2+G 2600 2x32 2x256 3072 5.0 21.0 206A7 Pen D G870 2+G 3100 2x32 2x256 3072 5. 0 21.0 206A7 Pen D G2100T 2+G 2600 2x32 2x256 3072 5.0 25.6 306A9 Pen MD 977-997 2+G 1400 1600 2x32 2x256 2048 5.0 21.3 206A7 Pen MD B970-980 2+G 2300 2400 2x32 2x256 2048 5.0 21.3 206A7 Pen MD 2020M 2+G 2400 2x32 2x256 2048 5.0 25.6 306A9 Pen MD 2117U 2+G 1800 2x32 2x256 2048 5.0 25.6 306A9 i3 D 3220-3240 2+HG 3300 3400 2x32 2x256 3072 5.0 25.6 306A9 i3 D 3220T-3240 2+HG 2800 2900 2x32 2x256 3072 5.0 25.6 306A9 i3 MD 2328M 2+HG 2200 2x32 2x256 3072 5.0 21.3 206A7 i3 MD 2370M 2+HG 2400 2x32 2x256 3072 5.0 21.3 206A7 i3 MD 2365M-2377 2+HG 1400 1500 2x32 2x256 3072 5.0 21.3 206A7 i3 MD 3110M-3120 2+HG 2400 2500 2x32 2x256 3072 5.0 25.6 306A9 i3 MD 3217U 2+HG 1800 2x32 2x256 3072 5. 0 25.6 306A9 i5 QT 2380P-2450 4 3100 3200 4x32 4x256 6144 5.0 21.0 206A7 i5 QT 2550K 4 3400 4x32 4x256 6144 5.0 21.0 296a7 i5 QT 3450-3570 4+G 2300 3400 4x32 4x256 6144 5.0 25.6 306A9 i5 QT 3350P 4 3100 4x32 4x256 6144 5.0 25.6 306A9 i5 QT 3330S-3570 4+G 2700 3400 4x32 4x256 6144 5.0 25.6 306A9 i5 QT 3570T 4+G 2300 4x32 4x256 6144 5.0 25.6 306A9 i5 DT 3470T 2+HG 2900 2x32 2x256 3072 5.0 25.6 306A9 i5 MDT 3210M-3360 2+HG 2500 2800 2x32 2x256 3072 5.0 25.6 306A9 i5 MDT 3317U-3427 2+HG 1700 1800 2x32 2x256 3072 5.0 25.6 306A9 i7 QT 3820 4+H 3600 4x32 4x256 10240 5.0 51.2 206D7 i7 QT 3770 4+HG 3400 4x32 4x256 8192 5.0 25.6 306A9 i7 QT 3770K 4+HG 3500 4x32 4x256 8192 5. 0 25.6 306A9 i7 QT 3770S 4+HG 3100 4x32 4x256 8192 5.0 25.6 306A9 i7 QT 3770T 4+HG 3500 4x32 4x256 8192 5.0 25.6 306A? i7E QT 3820 4+H 3600 4x32 4x256 10240 5.0 51.2 206D7 i7E ST 3970X 6+H 3300 6x32 6x256 15360 5.0 51.2 i7 MDT 3520M 2+H 2900 4x32 4x256 4096 5.0 25.6 306A9 i7 MDT 3517U-3667 2+H 1900 2000 4x32 4x256 4096 5.0 25.6 306A9 i7 MQT 3610QM-3630 4+H 2300 2400 4x32 4x256 6144 5.0 25.6 306A9 i7 MQT 3612QM-3635 4+H 2100 2400 4x32 4x256 6144 5.0 25.6 306A9 i7 MQT 3720QM-3740 4+H 2600 2700 4x32 4x256 6144 5.0 25.6 306A9 i7 MQT 3820QM-3840 4+H 2700 2800 4x32 4x256 8192 5.0 25.6 306A9 i7E MQT 3920XM 4+H 2900 4x32 4x256 8192 5.0 25.6 306A9 XEO DT E3V2-1220L 2+H 2300 2x32 2x256 3072 5. 0 25.6 306A9 XEO QT E3V2-1265L 4+H 2500 4x32 4x256 8192 5.0 25.6 306A9 XEO QT E3V2-1220-1225 4 3100 3200 4x32 4x256 8192 5.0 25.6 306A9 XEO QT E3V2-1230-1290 4+H 3100 3700 4x32 4x256 8192 5.0 25.6 306A9 XEO S E5-1428L 6+H 1800 6x32 6x256 15360 32.0 206D7 XEO QT E5-1620 4 3600 4x32 4x256 10240 51.2 206D7 XEO ST E5-1650 6+H 3200 6x32 6x256 12288 51.2 206D7 XEO ST E5-1660 6+H 3300 6x32 6x256 15360 51.2 206D7 XEO Q E5-2403-2407 4 1800 2200 4x32 4x256 10240 6.4 25.6 206D7 XEO ST E5-2420-2440 6+H 1900 2400 6x32 6x256 15360 7.2 32.0 206D6/7 XEO ST ES-2430L 6+H 2000 6x32 6x256 15360 7.2 32.0 206D6/7 XEO UT ES 2450-2470 8+H 2100 2300 8x32 8x256 20480 8.0 38.4 206D6/7 XEO UT E5-2450L 9+H 1800 8x32 8x256 20480 8. 0 38.4 206D6/7 XEO QT E5-2603-2609 4 1800 2400 4x32 4x256 10240 6.4 34.1 206D6/7 XEO ST E5-2620-2640 6+H 2000 2500 6x32 6x256 15360 7.2 42.6 206D6/7 XEO ST E5-2630L 6+H 2000 6x32 6x256 15360 7.2 42.6 206D6/7 XEO DT E5-2637 2+H 3000 2x32 2x256 5120 8.0 51.2 206D6/7 XEO QT E5-2643 4+H 3333 4x32 4x256 10240 8.0 51.2 206D6/7 XEO UT E5-2650-2690 8+H 2000 2900 8x32 8x256 20480 8.0 51.2 206D6/7 XEO UT E5-2650L 8+H 1800 8x32 8x256 20480 8.0 51.2 206D6/7 XEO UT E5-2665 8+H 2400 8x32 8x256 20480 8.0 51.2 206D6/7 XEO ST E5-2667 6+H 2900 6x32 6x256 15360 8.0 51.2 206D6/7 XEO UT E5-2687W 8+H 3100 8x32 8x256 20480 8.0 51.2 206D7 XEO Q E5-4603 4+H 2000 4x32 4x256 10240 6.4 34.1 206D7 XEO S E5-4607 6+H 2200 6x32 6x256 12288 6. 4 34.1 206D7 XEO ST E5-4610 6+H 2400 6x32 6x256 15360 7.2 42.6 206D7 XEO ST E5-4617 6 2900 6x32 6x256 15360 7.2 51.2 206D7 XEO UT E5-4620 8+H 2200 8x32 8x256 16384 7.2 42.6 206D6/7 XEO UT E5-4640-4650 8+H 2400 2700 8x32 8x256 20480 8.0 51.2 206D6/7 XEO UT E5-4650L 8+H 2600 8x32 8x256 20480 8.0 51.2 206D6/7 M = Mobile D = Dual Q = Quad S = Six Way U = Eight Way V = Ten Way E = Extreme Pen = Pentium Cel = Celeron XEO = Xeon i3 = Core i3 i5 = Core i5 i7 = Core i7 H = Hyperthreading T See Turbo Boost G = Graphics CPUID Model 206A? or 206D? = Sandy Bridge 306A? = Ivy Bridge Back To Contents List

2013 Processors

CPU Cores MHz MHz KB L1 KB L2 KB L3 Bus Mem Chan- CPUID From To Cache Cache Cache GT/s GB/s nels Model
Atom Z2420 1+HTG 1200T 24 512 6. 4 2 306?? Atom Z2760 4+TG 1800 24 512 6.4 30651 Atom Z3470D-3770D 4+TG 1833T 2410T 4x24 2048 10.6 1 30673 Atom Z3470-3770 4+TG 1866T 2390T 4x24 2048 17.1 2 306?? Atom Z2520-2580 2+HTG 1200T 2000T 2x24 1024 8.5 2 306?? Cel G470 1+HG 2000 32 256 1536 5.0 17.0 2 206A7 Cel D G1610-1630 2+G 2600 2800 2x32 2x256 2048 5.0 21.0 2 306A9 Cel D G1610T-1620T 2+G 2300 2400 2x32 2x256 2048 5.0 21.0 2 306A9 Cel D J1750 2+G 2410 2x32 1024 Cel D J1800 2+HG 2410 2x32 1024 Cel Q J1850 4+G 2000 4x32 2048 Cel Q J1900 4+HG 2000 4x32 2048 Cel MD 1000M-1020M 2+G 1800 2100 2x32 2x256 2048 5.0 24.6 2 306A9 Cel MD 1007U-1037U 2+G 1500 1800 2x32 2x256 2048 5. 0 24.6 2 306A9 Cel MD 1019Y 2+G 1000 2x32 2x256 2048 5.0 24.6 2 306A9 Cel MD 2950M 2+G 2000 2x32 2x256 2048 5.0 24.6 2 306C? Cel MD 2955U-2957U 2+G 1400 2x32 2x256 2048 5.0 24.6 2 306C? Cel MD 2961Y 2+G 1100 2x32 2x256 2048 5.0 24.6 2 306C? Cel MD 2980Y-2981Y 2+G 1600 2x32 2x256 2048 5.0 24.6 2 306C? Cel MD N2805 2+G 1460 2x24 1024 8.5 1 30673 Cel MDT N2806 2+G 1580 2x24 1024 8.5 1 3067? Cel MD N2810 2+G 2060 2x24 1024 17.0 2 3067? Cel MDT N2815-2820 2+G 1860 2130 2x24 1024 17.0 2 3067? Cel MQ N2910 4+G 1600 4x24 2048 17.0 2 3067? Cel MQT N2920 4+G 1860 4x24 2048 17. 0 2 3067? Pen Q J2850-2900 4+TG 2600 4x32 2048 2 Pen D G2010-2030 2+G 2800 3000 2x32 2x256 3072 5.0 21.3 2 306A9 Pen D G2020T-2030T 2+G 2500 2600 2x32 2x256 3072 5.0 21.3 2 306A9 Pen D G2120-2140 2+G 3100 3300 2x32 2x256 3072 5.0 25.6 2 306A9 Pen D G2120T 2+G 2700 2x32 2x256 3072 5.0 25.6 2 306A9 Pen D G3220 2+G 3000 2x32 2x256 3072 5.0 21.3 2 306C3 Pen D G3220T 2+G 2600 2x32 2x256 3072 5.0 21.3 2 306C3 Pen D G3420T 2+G 2700 2x32 2x256 3072 5.0 25.6 2 306C3 Pen D G3420-3430 2+G 3200 3300 2x32 2x256 3072 5.0 25.6 2 306C3 Pen MD A1018 2+G 2100 2x32 2x256 1024 5.0 25.6 2 Pen MQ N3510-3520 4+TG 2000 2166 4x32 4x256 2048 2 30673 Pen MD 2030M 2+G 2500 2x32 2x256 2048 5. 0 25.6 2 306A9 Pen MD 2127U 2+G 1900 2x32 2x256 2048 5.0 25.6 2 306A9 Pen MD 3560Y-3561Y 2+G 1200 2x32 2x256 2048 5.0 25.6 2 306C? Pen MD 3556U-3558U 2+G 1700 2x32 2x256 2048 5.0 25.6 2 306C? Pen MD 3550M 2+G 2300 2x32 2x256 2048 5.0 25.6 2 306C? i3 D 3210-3250 2+HG 3200 3500 2x32 2x256 3072 5.0 25.6 2 306A9 i3 D 3250T 2+HG 3000 2x32 2x256 3072 5.0 25.6 2 306A9 i3 D 4130-4340 2+HG 3400 3600 2x32 2x256 3072 5.0 25.6 2 306C3 i3 D 4130T-4330T 2+HG 2900 3000 2x32 2x256 3072 5.0 25.6 2 306C3 i3 MD 2348M 2+HG 2300 2x32 2x256 3072 5.0 21.3 2 206A7 i3 MD 2375M 2+HG 1500 2x32 2x256 3072 5.0 21.3 2 206A7 i3 MD 3130M 2+HG 2600 2x32 2x256 3072 5. 0 25.6 2 306A9 i3 MD 3227U 2+HG 1900 2x32 2x256 3072 5.0 25.6 2 306A9 i3 MD 3229Y 2+HG 1400 2x32 2x256 3072 5.0 25.6 2 306A9 i3 MD 4000M-4100M 2+HG 2400 2500 2x32 2x256 3072 5.0 25.6 2 306C? i3 MD 4005U-4158U 2+HG 1700 2000 2x32 2x256 3072 5.0 25.6 2 306C? i3 MD 4012Y-4020Y 2+HG 1500 1500 2x32 2x256 3072 5.0 25.6 2 306C? i5 QT 3340 4+G 3100 4x32 4x256 6144 5.0 25.6 2 306A9 i5 QT 3340S 4+G 2800 4x32 4x256 6144 5.0 25.6 2 306A9 i5 QT 4430-4670 4+G 3000 3400 4x32 4x256 6144 5.0 25.6 2 306C3 i5 QT 4430S-4670S 4+G 2700 3100 4x32 4x256 6144 5.0 25.6 2 306C3 i5 DT 4570T 2+HG 2900 2x32 2x256 6144 5.0 25.6 2 306C3 i5 QT 4670T 4+G 2300 4x32 4x256 6144 5. 0 25.6 2 306C3 i5 QT 4670K 4+G 3400 4x32 4x256 6144 5.0 25.6 2 306C3 i5 QT 4570R-4670R 4+G 2700 3000 4x32 4x256 4096 5.0 25.6 2 306C3 i5 MDT 3230M-3380M 2+HG 2600 2900 2x32 2x256 3072 5.0 25.6 2 306A? i5 MDT 3337U-3437U 2+HG 1800 1900 2x32 2x256 3072 5.0 25.6 2 306A9 i5 MDT 3339Y-3439Y 2+HG 1500 1500 2x32 2x256 3072 5.0 25.6 2 306A9 i5 MDT 4200H 2+HG 2800 2x32 2x256 3072 5.0 25.6 2 306C? i5 MDT 4200M-4330M 2+HG 2500 2800 2x32 2x256 3072 5.0 25.6 2 306C? i5 MDT 4200U-4300U 2+HG 1600 1900 2x32 2x256 3072 5.0 25.6 2 306C? i5 MDT 4250U-4288U 2+HG 1300 2600 2x32 2x256 3072 5.0 25.6 2 306C? i5 MDT 4350U-4360U 2+HG 1400 1500 2x32 2x256 3072 5.0 25.6 2 306C? i5 MDT 4200Y-4302Y 2+HG 1400 1500 2x32 2x256 3072 5. 0 25.6 2 306C? i7 QT 4765T-4770T 4+HG 2000 2500 4x32 4x256 8192 5.0 25.6 2 306C? i7 QT 4770-4771 4+HG 3400 3500 4x32 4x256 8192 5.0 25.6 2 306C3 i7 QT 4770K 4+HG 3500 4x32 4x256 8192 5.0 25.6 2 306C3 i7 QT 4770S 4+HG 3100 4x32 4x256 8192 5.0 25.6 2 306C3 i7 QT 4779R 4+HG 3200 4x32 4x256 6144 5.0 25.6 2 306C? i7E QT 4820K 4+H 3700 4x32 4x256 10240 5.0 59.7 4 306E4 i7E ST 4930K 6+H 3400 6x32 6x256 12288 5.0 59.7 4 306E4 i7E ST 4960X 6+H 3600 6x32 6x256 15360 5.0 59.7 4 306E4 i7 MDT 4500U-4650U 2+HG 1500 1700 2x32 2x256 4096 5.0 25.6 2 306C? i7 MDT 4558U 2+HG 2800 2x32 2x256 4096 5.0 25.6 2 306C? i7 MDT 4600U 2+HG 2100 2x32 2x256 4096 5. 0 25.6 2 306C? i7 MDT 4600M 2+HG 2900 2x32 2x256 4096 5.0 25.6 2 306C? i7 MDT 4610Y 2+HG 1700 2x32 2x256 4096 5.0 25.6 2 306C? i7 MQT 4702HQ-4700HQ 4+HG 2000 2400 4x32 4x256 6144 5.0 25.6 2 306C? i7 MQT 4702MQ 4+HG 2200 4x32 4x256 6144 5.0 25.6 2 306C? i7 MQT 4750HQ-4960HQ 4+HG 2000 2600 4x32 4x256 6144 5.0 76.8# 2 306C? i7 MQT 4900MQ 4+HG 2800 4x32 4x256 8192 5.0 25.6 2 306C? XEO DT E3V3-1220L 2+H 1100 2x32 2x256 4096 5.0 25.6 2 306C? XEO QT E3V3-1230L 4+H 1800 4x32 4x256 8192 5.0 25.6 2 306C? XEO QT E3V3-1220 4 3100 4x32 4x256 8192 5.0 25.6 2 306C3 XEO QT E3V3-1230-1280 4+H 3300 3600 4x32 4x256 8192 5.0 25.6 2 306C? XEO QT E3V3-1225-1285 4+HG 3200 3600 4x32 4x256 8192 5. 0 25.6 2 306C? XEO QT E3V3-1265L-1285 4+HG 2500 3100 4x32 4x256 8192 5.0 25.6 2 306C? XEO QT E5V2-1620 4+H 3700 4x32 4x256 10240 59.7 4 306E4 XEO ST E5V2-1650 6+H 3500 3700 6x32 6x256 12288 59.7 4 306E4 XEO ST E5V2-1660 6+H 3500 3700 6x32 6x256 15360 59.7 4 306E4 XEO Q E5V2-2603-2609 4 1800 2500 4x32 4x256 10240 6.4 42.6 4 306E4 XEO ST E5V2-2620-2630 6+H 2100 2600 6x32 6x256 15360 7.2 51.2 4 306E4 XEO ST E5V2-2630L 6+H 2400 6x32 6x256 15360 7.2 51.2 4 306E4 XEO QT E5V2-2637 4+H 3500 4x32 4x256 10240 8.0 59.7 4 306E4 XEO UT E5V2-2640 8+H 2000 8x32 8x256 20480 7.2 51.2 4 306E4 XEO ST E5V2-2643 6+H 3500 6x32 6x256 25600 8.0 59.7 4 306E4 XEO UT E5V2-2650 8+H 2600 8x32 8x256 20480 8. 0 59.7 4 306E4 XEO VT E5V2-2650L 10+H 1700 10x32 10x256 25600 7.2 51.2 4 306E4 XEO VT E5V2-2660-2690 10+H 2200 3000 10x32 10x256 25600 8.0 59.7 4 306E4 XEO UT E5V2-2667 8+H 3300 8x32 8x256 25600 8.0 59.7 4 306E4 XEO UT E5V2-2687W 8+H 3400 8x32 8x256 25600 8.0 59.7 4 306E4 XEO WT E5V2-2695-2697 12+H 2400 2700 12x32 12x256 30720 8.0 59.7 4 306E4 M = Mobile D = Dual Q = Quad S = Six Way U = Eight Way V = Ten Way W = Twelve Way E = Extreme Pen = Pentium Cel = Celeron XEO = Xeon i3 = Core i3 i5 = Core i5 i7 = Core i7 H = Hyperthreading T See Turbo Boost G = Graphics CPUID Model 206A? = Sandy Bridge 306A? or E? = Ivy Bridge 306C? = Haswell 306C? + # Extra for 128 MB EDRAM Back To Contents List

2014 Processors

CPU Cores MHz MHz KB L1 KB L2 KB L3 Bus Mem Chan- CPUID From To Cache Cache Cache GT/s GB/s nels Model
Atom Z3460-3480 2+TG 1600T 2133T 2x24 1024 8. 5 2 306?? Cel D G1820-1830 2+G 2700 2800 2x32 2x256 2048 5.0 21.3 2 306C3 Cel D G1820T 2+G 2400 2x32 2x256 2048 5.0 21.3 2 306C3 Cel MDT N2807 2+G 1580 2x24 1024 10.6 1 3067? Cel MDT N2830 2+G 2160 2x24 1024 21.3 2 3067? Cel MQT N2930 4+G 1830 4x24 2048 21.3 2 3067? Pen MQ N3530 4+TG 2166 4x32 4x256 2048 2 30673 i5 MDT 4310M-4340M 2+HG 2700 2900 2x32 2x256 3072 5.0 25.6 2 306C? i5 MDT 4310U 2+HG 2000 2x32 2x256 3072 5.0 25.6 2 306C? i7 MDT 4610M 2+HG 3000 2x32 2x256 4096 5.0 25.6 2 306C? i7 MQT 4810MQ 4+HG 2800 4x32 4x256 6144 5.0 25.6 2 306C? i7 MQT 4860HQ 4+HG 2400 4x32 4x256 6144 5. 0 76.8# 2 306C? i7 MQT 4910MQ 4+HG 2900 4x32 4x256 8192 5.0 25.6 2 306C? XEO Q E5V2-2403-2407 4 1800 2400 4x32 4x256 10240 6.4 32.0 3 306E4 XEO ST E5V2-2420-2430 6+H 2200 2500 6x32 6x256 15360 7.2 38.4 3 306E4 XEO ST E5V2-2430L 6+H 2400 6x32 6x256 15360 7.2 38.4 3 306E4 XEO UT E5V2-2440 8+H 1900 8x32 8x256 20480 7.2 38.4 3 306E4 XEO UT E5V2-2450 8+H 2500 8x32 8x256 20480 8.0 38.4 3 306E4 XEO VT E5V2-2450L 10+H 1700 10x32 10x256 25600 7.2 38.4 3 306E4 XEO VT E5V2-2470 10+H 2400 10x32 10x256 25600 8.0 38.4 3 306E4 XEO Q E5V2-4603 4+H 2200 4x32 4x256 10240 6.4 42.6 4 306E4 XEO ST E5V2-4607 6 2600 6x32 6x256 15360 6.4 42.6 4 306E4 XEO UT E5V2-4610 8+H 2300 8x32 8x256 16384 7. 2 51.2 4 306E4 XEO UT E5V2-4620 8+H 2600 8x32 8x256 20480 7.2 51.2 4 306E4 XEO UT E5V2-4627 8 3300 8x32 8x256 16384 7.2 59.7 4 306E4 XEO UT E5V2-4640 10+H 2200 10x32 10x256 20480 8.0 59.7 4 306E4 XEO UT E5V2-4650 10+H 2400 10x32 10x256 25600 8.0 59.7 4 306E4 XEO WT E5V2-4657L 12+H 2400 12x32 12x256 30720 8.0 59.7 4 306E4 XEO WT E7V2-2850 12+H 2300 12x32 12x256 24756 7.2 68.0 4 306E7 XEO XT E7V2-2870 15+H 2300 15x32 15x256 30720 8.0 85.0 4 306E7 XEO XT E7V2-2880-2890 15+H 2500 2800 15x32 15x256 38400 8.0 85.0 4 306E7 XEO S E7V2-4809 6+H 1900 6x32 6x256 12288 6.4 68.0 4 306E7 XEO UT E7V2-4820 8+H 2000 8x32 8x256 16384 7.2 68.0 4 306E7 XEO VT E7V2-4830 10+H 2200 10x32 10x256 20480 7. 2 68.0 4 306E7 XEO WT E7V2-4850 12+H 2300 12x32 12x256 24756 7.2 68.0 4 306E7 XEO WT E7V2-4860 12+H 2600 12x32 12x256 30720 8.0 85.0 4 306E7 XEO XT E7V2-4870 15+H 2300 15x32 15x256 30720 8.0 85.0 4 306E7 XEO XT E7V2-4880-4890 15+H 2500 2800 15x32 15x256 38400 8.0 85.0 4 306E7 XEO WT E7V2-8850 12+H 2300 12x32 12x256 24756 7.2 68.0 4 306E7 XEO WT E7V2-8857 12 3000 12x32 12x256 30720 8.0 85.0 4 306E7 XEO XT E7V2-8870 15+H 2300 15x32 15x256 30720 8.0 85.0 4 306E7 XEO XT E7V2-8880-8890 15+H 2500 2800 15x32 15x256 38400 8.0 85.0 4 306E7 XEO XT E7V2-8880L 15+H 2200 15x32 15x256 38400 8.0 85.0 4 306E7 XEO VT E7V2-8891 10+H 3200 10x32 10x256 38400 8.0 85.0 4 306E7 XEO ST E5V2-8893 6+H 2600 6x32 6x256 38400 8. 0 85.6 4 306E4 M = Mobile D = Dual Q = Quad S = Six Way U = Eight Way V = Ten Way W = Twelve Way X = Fifteen Way E = Extreme Pen = Pentium Cel = Celeron XEO = Xeon i3 = Core i3 i5 = Core i5 i7 = Core i7 H = Hyperthreading T See Turbo Boost G = Graphics CPUID Model 306E? = Ivy Bridge 306C? = Haswell # Extra for 128 MB EDRAM Back To Contents List

Turbo Boost

Max Max Max 11 Max GHz GHz GHz GHz GHz GHz GHz GHz Core i5 Core i7 Xeon More Xeon
i5-430M 2.26 2.53 i7-610E 2.53 3.20 E7520 1.87 2.40 E7-2820 2.00 2.27 i5-430UM 1.20 1.73 i7-620LM 2.00 2.80 E7530 1.87 2.13 E7-2830 2. 13 2.40 i5-450M 2.40 2.66 i7-640LM 2.13 2.93 E7540 2.00 2.27 E7-2850 2.00 2.40 i5-460M 2.53 2.80 i7-620M 2.66 3.33 L7545 1.87 2.53 E7-2860 2.26 2.67 i5-470UM 1.33 1.86 i7-640M 2.80 3.46 L7555 1.87 2.53 E7-2870 2.40 2.80 i5-480M 2.66 2.93 i7-620UM 1.06 2.13 X7542 2.67 2.80 E5-4610 2.40 2.90 i5-520M 2.40 2.93 i7-640UM 1.20 2.27 X7560 2.27 2.67 E5-4617 2.90 3.40 i5-520UM 1.07 1.87 i7-660LM 2.26 3.06 E3-1220 3.10 3.40 E5-4620 2.20 2.60 i5-540M 2.53 3.07 i7-660UM 1.33 2.40 E3-1220L 2.20 3.40 E5-4640 2.40 2.80 i5-540UM 1.20 2.00 i7-660UE 1.33 2.40 E3-1260L 2.40 3.30 E5-4650 2.70 3.30 i5-560M 2.66 3.20 i7-680UM 1.46 2.53 E3-1225 3.10 3.40 E5-4650L 2.60 3.10 i5-560UM 1.33 2.13 i7-720QM 1.60 2.80 E3-1230 3.20 3.60 E7-4820 2.00 2.27 i5-580M 2.66 3.33 i7-740QM 1.73 2.93 E3-1235 3. 20 3.60 E7-4830 2.13 2.40 i5-650 3.20 3.46 i7-820QM 1.73 3.06 E3-1240 3.30 3.70 E7-4850 2.00 2.40 i5-655K 3.20 3.46 i7-840QM 1.86 3.20 E3-1245 3.30 3.70 E7-4860 2.26 2.67 i5-660 3.33 3.60 i7-860 2.80 3.46 E3-1270 3.40 3.80 E7-4870 2.40 2.80 i5-661 3.33 3.60 i7-860S 2.53 3.46 E3-1275 3.40 3.80 E7-8837 2.66 2.80 i5-670 3.46 3.73 i7-870 2.93 3.60 E3-1280 3.50 3.90 E7-8830 2.13 2.40 i5-680 3.60 3.86 i7-870S 2.66 3.60 E3-1290 3.60 4.00 E7-8850 2.00 2.40 i5-750 2.66 3.20 i7-875K 2.93 3.60 E3 V2 E7-8860 2.26 2.67 i5-750S 2.40 3.20 i7-880 3.06 3.73 E3-1220 3.10 3.50 E7-8870 2.40 2.80 i5-760 2.80 3.33 i7-920 2.66 2.93 E3-1220L 2.30 3.50 E7-8867L 2.13 2.53 i5-2300 2.80 3.10 i7-930 2.80 3.06 E3-1225 3.20 3.60 E7 V2 i5-2310 2.90 3.20 i7-940 2.93 3.20 E3-1230 3. 30 3.70 E7-2850 2.30 2.80 i5-2320 3.00 3.33 i7-950 3.06 3.33 E3-1240 3.40 3.80 E7-2870 2.30 2.90 i5-2380P 3.10 3.40 i7-960 3.20 3.46 E3-1245 3.40 3.80 E7-2880 2.50 3.10 i5-2390T 2.70 3.50 i7-965 3.20 3.46 E3-1265L 2.50 3.50 E7-2890 2.80 3.40 i5-2400 3.10 3.40 i7-970 3.20 3.46 E3-1270 3.50 3.90 E7-4820 2.00 2.50 i5-2400S 2.50 3.33 i7-975 3.33 3.60 E3-1275 3.50 3.90 E7-4830 2.20 2.70 i5-2405S 2.50 3.33 i7-980 3.33 3.60 E3-1280 3.60 4.00 E7-4850 2.30 2.80 i5-2450P 3.20 3.50 i7-980X 3.33 3.60 E3-1290 3.70 4.10 E7-4860 2.60 3.20 i5-2500 3.30 3.70 i7-990X 3.46 3.73 E3 V3 E7-4870 2.30 2.90 i5-2500K 3.30 3.70 i7-2600K 3.40 3.80 E3-1225 3.20 3.60 E7-4880 2.50 3.10 i5-2500S 3.30 3.70 i7-2600S 2.80 3.80 E3-1230 3.30 3.70 E7-4890 2.80 3.40 i5-2500T 2.30 3.33 i7-2617M 1. 50 2.60 E3-1230L 1.80 2.80 E7-8850 2.30 2.80 i5-2550K 3.40 3.80 i7-2620M 2.70 3.40 E3-1240 3.40 3.80 E7-8857 3.00 3.60 i5-2410M 2.30 2.90 i7-2629M 2.10 3.00 E3-1245 3.40 3.80 E7-8870 2.30 2.90 i5-2430M 2.40 3.00 i7-2630QM 2.00 2.90 E3-1265L 2.50 3.70 E7-8880L 2.20 2.80 i5-2435M 2.40 3.00 i7-2635QM 2.00 2.90 E3-1270 3.50 3.90 E7-8880 2.50 3.10 i5-2450M 2.50 3.10 i7-2637M 1.70 2.80 E3-1275 3.50 3.90 E7-8880 2.50 3.10 i5-2467M 1.60 2.30 i7-2640M 2.80 3.50 E3-1280 3.60 4.00 E7-8880 2.50 3.10 i5-2510E 2.50 3.10 i7-2649M 2.30 3.20 E3-1285 3.60 4.00 E7-8880 2.50 3.10 i5-2520M 2.50 3.20 i7-2657M 1.60 2.70 E3-1285L 3.10 3.90 i5-2537M 1.40 2.30 i7-2670QM 2.20 3.10 E5-1620 3.60 3.80 i5-2540M 2.60 3.30 i7-2675QM 2.20 3.10 E5-1650 3.20 3.80 i5-2550K 3.40 3.80 i7-2677M 1.80 2.90 E5-1660 3.30 3.90 i5-2557M 1. 70 2.70 i7-2700K 3.50 3.90 E5-2420 1.90 2.40 i5-3210M 2.50 3.10 i7-2710QE 2.10 3.00 E5-2430 2.20 2.70 i5-3230M 2.60 3.30 i7-2720QM 2.20 3.30 E5-2430L 2.00 2.50 i5-3317U 1.70 2.60 i7-2760QM 2.40 3.50 E5-2440 2.40 2.90 i5-3320M 2.60 3.30 i7-2820QM 2.30 3.40 E5-2450 2.10 2.90 i5-3330S 2.70 3.20 i7-2860QM 2.50 3.60 E5-2450L 1.80 2.30 i5-3337U 1.80 2.70 i7-3517U 1.90 3.00 E5-2470 2.30 3.10 i5-3339Y 1.50 2.00 i7-3520M 2.90 3.60 E5-2620 2.00 2.50 i5-3340 3.10 3.30 i7-3610QM 2.30 3.30 E5-2630 2.30 2.80 i5-3340M 2.70 3.40 i7-3612QM 2.10 3.10 E5-2630L 2.00 2.50 i5-3340S 2.80 3.30 i7-3612QM 2.10 3.10 E5-2637 3.00 3.50 i5-3350P 3.10 3.30 i7-3615QM 2.30 3.30 E5-2640 2.50 3.00 i5-3360M 2.80 3.50 i7-3630QM 2.40 3.40 E5-2630L 2.00 2.50 i5-3380M 2.90 3.60 i7-3632QM 2.20 3.20 E5-2637 3.00 3.50 i5-3427U 1.80 2.80 i7-3635QM 2. 40 3.40 E5-2643 3.30 3.50 i5-3437U 1.90 2.90 i7-3667U 2.00 3.20 E5-2650 2.00 2.80 i5-3439Y 1.50 2.30 i7-3720QM 2.60 3.60 E5-2650L 1.80 2.30 i5-3450 3.10 3.50 i7-3740QM 2.70 3.70 E5-2660 2.20 3.00 i5-3450S 2.80 3.50 i7-3770 3.40 3.90 E5-2665 2.40 3.10 i5-3470 3.20 3.60 i7-3770K 3.50 3.90 E5-2667 2.90 3.50 i5-3470S 2.90 3.60 i7-3770S 3.10 3.90 E5-2650 2.00 2.80 i5-3470T 2.90 3.60 i7-3770T 2.50 3.70 E5-2660 2.20 3.00 i5-3475S 2.90 3.60 i7-3820 3.60 3.80 E5-2670 2.60 3.30 i5-3550 3.30 3.70 i7-3820QM 2.70 3.70 E5-2680 2.70 3.50 i5-3550S 3.00 3.70 i7-3840QM 2.80 3.80 E5-2687W 3.10 3.80 i5-3570 3.40 3.80 i7-3920XM 2.90 3.80 E5-2690 2.90 3.80 i5-3570K 3.40 3.80 i7-3930K 3.20 3.80 E5 V2 i5-3570S 3.10 3.80 i7-3960X 3.30 3.90 E5-1620 3.70 3.90 i5-3570T 2.30 3.30 i7-3970X 3.50 4.00 E5-1650 3. 50 3.90 i5-4200H 2.80 3.40 i7-4500U 1.80 3.00 E5-1660 3.70 4.00 i5-4200M 2.50 3.10 i7-4550U 1.50 3.00 E5-2420 2.20 2.70 i5-4200U 1.60 2.60 i7-4558U 2.80 3.20 E5-2430L 2.40 2.80 i5-4200Y 1.40 1.90 i7-4600M 2.90 3.60 E5-2430 2.50 3.00 i5-4202Y 1.60 2.00 i7-4600U 2.10 3.30 E5-2440 1.90 2.40 i5-4210Y 1.50 1.90 i7-4610M 3.00 3.70 E5-2450L 1.70 2.10 i5-4250U 1.30 2.60 i7-4610Y 1.70 2.90 E5-2450 2.50 3.30 i5-4258U 2.40 2.90 i7-4650U 1.70 3.30 E5-2470 2.40 3.20 i5-4288U 2.60 3.10 i7-4700HQ 2.40 3.40 E5-2620 2.10 2.60 i5-4300M 2.60 3.30 i7-4700MQ 2.40 3.40 E5-2630L 2.40 2.80 i5-4300U 1.90 2.90 i7-4702HQ 2.20 3.20 E5-2630 2.60 3.10 i5-4300Y 1.60 2.30 i7-4702MQ 2.20 3.20 E5-2637 3.50 3.80 i5-4302Y 1.60 2.30 i7-4750HQ 2.00 3.20 E5-2640 2.00 2.50 i5-4310M 2.70 3.40 i7-4765T 2.00 3.00 E5-2643 3.50 3.80 i5-4310U 2. 00 3.00 i7-4770 3.40 3.90 E5-2650L 1.70 2.10 i5-4330M 2.80 3.50 i7-4770K 3.50 3.90 E5-2650 2.60 3.40 i5-4340M 2.90 3.60 i7-4770R 3.20 3.90 E5-2660 2.20 3.00 i5-4350U 1.40 2.90 i7-4770S 3.10 3.80 E5-2667 3.30 4.00 i5-4360U 1.50 3.00 i7-4770T 2.50 3.70 E5-2670 2.50 3.30 i5-4430 3.00 3.20 i7-4771 3.50 3.90 E5-2680 2.80 3.60 i5-4430S 2.70 3.20 i7-4800MQ 2.70 3.70 E5-2687W 3.40 4.00 i5-4440 3.10 3.30 i7-4810MQ 2.80 3.80 E5-2690 3.00 3.60 i5-4440S 2.80 3.30 i7-4820K 3.70 3.90 E5-2695 2.40 3.20 i5-4570 3.20 3.60 i7-4850HQ 2.30 3.50 E5-2697 2.70 3.50 i5-4570R 2.70 3.20 i7-4860HQ 2.40 3.60 E5-4610 2.30 2.70 i5-4570S 2.90 3.60 i7-4900MQ 2.80 3.80 E5-4620 2.60 3.00 i5-4570T 2.90 3.60 i7-4910MQ 2.90 3.90 E5-4627 3.30 3.60 i5-4670 3.40 3.80 i7-4930K 3.40 3.90 E5-4640 2.20 2.70 i5-4670K 3.40 3.80 i7-4950HQ 2. 40 3.60 E5-4650 2.40 2.90 i5-4670R 3.00 3.70 i7-4960HQ 2.60 3.80 E5-4657L 2.40 2.90 i5-4670S 3.10 3.80 i7-4960K 3.60 4.00 i5-4670T 2.30 3.30 2800 MHz Model 860 Turbo Boost Active Cores 1 2 3 4 Maximum MHz / Core 3466 3333 2933 2933 Maximum MHz All Cores 3466 6666 8800 11733 2800 MHz Model 930 Turbo Boost Active Cores 1 2 3 4 Maximum MHz / Core 3066 2933 2933 2933 Maximum MHz All Cores 3066 5866 8800 11733

Back To Contents List



AMD


Athlon MP varieties are essentially the same as XP.


 Older AMD CPUs

 CPU            MHz   MHz KB L1   KB L2     Type L2    FSB  CPUID
               From    To Cache   Cache       Cache    MHz  Model
        
 K5              75   100    8      512    External  50-66  50x-53x
 K6             166   300   32      512    External     66  56x-57x
 K62            300   475   32 512-1024    External    100  58x
 K63            400   500   32   256+L3  Full Speed    100  59x

 Duron          550  1800   64       64  Full Speed    100  63x,66x
 Athlon         500   750   64      512  Half or Back To Contents List


 Athlon 64

 CPU              MHz   MHz KB L1   KB L2    RAM  Ch  Bus   CPUID
                 From    To Cache   Cache             MB/s

 A64 FX51-53     2200  2400   64     1024    DD2   2  1600  F58,F5A
 A64 FX55-57     2600  2800   64     1024    DD2   2  2000  F7A,20F71
 A64 2800-3400   1800  2200   64      512    DD2   1  1600  F48,F4A,FC0,20FC2
 A64 2800-3700   1600  2400   64     1024    DD2   1  1600  F48,F4A
 A64 3000-4000   1800  2600   64      512    DD2   2  2000  See aaaa   
 A64 1640B       2700         64      512    DD2   2  2000  70FF2
 A64 2650e       1600         64      512    DD2   2  2000  70FF2
 A64 LE1660      2800         64      512    DD2   2  2000  70FF2
 A64 LE1600-1640 2200  2700   64     1024    DD2   2  2000  50FF3
 A64 3700-4000   2200  2400   64     1024    DD2   2  2000  F7A,20F71,30F72

 A64 = Athlon 64  DD2 = DDR2
 aaaa F7A,FF0,10FF0,20F71,20FF0,20FF2,40FF2,50FF2,50FF3,70FF1

                     Back To Contents List


 Athlon and Athlon 64 X2, X3 and X4

 CPU              MHz   MHz KB L1   KB L2  KB L3  RAM  Bus  CPUID  
                 From    To Cache   Cache  Cache       MB/s


 AX2 FX60-74     2600  3000  64*2   1024*2        DD2  2000 20F32,40F32,C0F13
 AX2 3800-4600   2000  2400  64*2    512*2        DD2  2000 See bbbb
 AX2 4400-4800   2200  2400  64*2   1024*2        DD2  2000 See bbbb
 AX2 3600-6000   1900  3100  64*2    512*2        DD2  2000 See cccc
 AX2 4000-6400   2000  3200  64*2   1024*2        DD2  2000 40F33
 AX2 BE2300-2400 1900  2300  64*2    512*2        DD2  2000 60FB1,60FB2
 AX2 = Athlon 64 or Athlon X2 Dual core, AX3 = Triple core, AX4 = Quad core 
 bbbb Socket 939 20F32,20FB1
 cccc Socket AM2 20F32,20FB1,40FB2,60FB1,60FB2 
 DD2 = DDR2 
 
                     Back To Contents List



 Mobile Athlon 64 and Turion

 CPU              MHz   MHz KB L1   KB L2    RAM   Bus  CPUID 
                 From    To Cache   Cache          MHz

 AMo 2800        1600         64      128    DD2  1600  F4A,F80,F82,FC0
 AMo 3000        1600         64      256    DD2  1600  F4A,F80,F82,FC0
 AMo 2000-3000   1600  2000   64      512    DD2  1600  F82,FC0,10FC0  
 AMo 2800-4000   1600  2600   64     1024    DD2  1600  F48,F4A,FC0,20F42
 AMo MV40        1600         64      512    DD2  1600  60FF2,70FF2    
 AMo TF36-TF38   2000  3200   64      256    DD2  1600  70FC2
 AMo TF20        1600         64      512    DD2  1600  70FC2

 AMD 3800-4000   2000  2200  64*2    512*2   DDR  1600  40FB2 
 AMd L310-L335   1200  1600  64*2    512*2   DD2  1600  60FB2
 AMd TK53-TK57   1700  1900  64*2    256*2   DD2  1600  60F81,60F82
 AMd M300-M320   2000  2100  64*2    512*2   DD2  3200  100FC2

 TMo ML28-ML42   1600  2400   64      512    DDR  1600  20F42
 TMo ML30-ML44   1600  2400   64     1024    DDR  1600  20F42
 TMo MT29-MT32   1600  1800   64      512    DDR  1600  20F42
 TMo MT39-MT40   1600  2400   64     1024    DDR  1600  20F42

 TMd TL50        1600        64*2    256*2   DD2  1600  40F82 
 TMd TL52-TL68   1600  2400  64*2    512*2   DD2  1600  40F82,60F81,60F82
 TMd L510,L625   1600        64*2    512*2   DD2  1600  60FB2
 TMd M500-M540   2200  2400  64*2    512*2   DD2  3600  100F62
 TMd M600-M660   2400  2700  64*2   1024*2   DD2  3600  100F62

 AMo = Mobile Athlon 64   AMd = Dual Core Mobile Athlon 64           
 TMo = Turion 64 Mobile   TMd = Dual Core Turion 64 Mobile
 DD2 = DDR2      

                     Back To Contents List

 

 Sempron

 CPU              MHz   MHz KB L1   KB L2    RAM    Bus  CPUID
                 From    To Cache   Cache           MHz

 Sem 2600-3500   1600  2000   64      128    DDR   1600  See dddd
 Sem 2500-3800   1400  2200   64      256    DDR   1600  FC0,dddd
 Sem LE1100-1150 1900  2000   64      256    DD2   1600  70FF1
 Sem LE1200-1300 2100  2300   64      512    DD2   1600  70FF1,70FF2
 Sem 140         2700         64     1024    DD2   4000  100F62
 Sem 2100-2300X2 1800  2200  64*2    256*2   DD2   1600  60FB2

 
 SMo 2600-3600   1600  2200   64      128    DDR   1600  See eeee,FC0
 SMo 3100-3800   1800  2200   64      256    DDR   1600  eeee,40FC2,70FC2 
 SMo 4000        2200         64      512    DD2   1600  40FC2
 SMo 200U-210U   1000  1500   64      256    DD2   1600  60FF2,70FF2
 
 Sem  = Sempron   SMo = Mobile Sempron 
 dddd = 10FC0,10FF0,20FC0,20FC2,20FF0,20FF2,40FF2,50FF2
 eeee = F82,10FC0,20FC2

                     Back To Contents List



 Opteron 1 and 2 Core

 CPU              MHz   MHz KB L1   KB L2    RAM   Bus   CPUID
                 From    To Cache   Cache         GT/s

 Opt  140-150    1400  2400   64     1024    DDR  1. 6*3  F51,F58,F5A
 Opt  142-152    1600  2600   64     1024    DDR  2.0*3  20F51
 Opt  144-156    1800  3000   64     1024    DDR  2.0*1  20F71
 Opt  140EE      1400         64     1024    DDR  1.6*3  F5A
 Opt  146HE      2000         64     1024    DDR  1.6*3  F5A
 Opt  240-250    1400  2400   64     1024    DDR  1.6*3  F51,F58,F5A
 Opt  242-256    1600  3000   64     1024    DDR  2.0*3  20F51
 Opt  240EE      1400         64     1024    DDR  1.6*3  F5A
 Opt  246HE      2000         64     1024    DDR  1.6*3  F5A
 Opt  840-850    1400  2400   64     1024    DDR  1.6*3  F51,F58,F5A
 Opt  842-856    1600  3000   64     1024    DDR  2.0*3  20F51
 Opt  840EE      1400         64     1024    DDR  1.6*3  F5A
 Opt  846HE      2000         64     1024    DDR  1.6*3  F5A

 O2C  165-185    1800  2600  64*2   1024*2   DDR  2.0*1  20F32
 O2C  265-290    1800  2800  64*2   1024*2   DDR  2.0*3  20F12
 O2C  260-275HE  1600  2200  64*2   1024*2   DDR  2. 0*3  20F12
 O2C  280-285SE  2400  2600  64*2   1024*2   DDR  2.0*3  20F12
 O2C  865-890    1800  2800  64*2   1024*2   DDR  2.0*3  20F10,20F12
 O2C  860-875HE  1600  2200  64*2   1024*2   DDR  2.0*3  20F12

 O2C 1210-1220   1800  2800  64*2   1024*2   DD2  2.0*1  40F32,40F33
 OC2 1222        3000        64*2   1024*2   DD2  2.0*3  40F32,40F33
 O2C 1210-1218HE 1800  2600  64*2   1024*2   DD2  2.0*3  40F12,40F13,40F32,40F33
 O2C 1220-1224SE 2800  3200  64*2   1024*2   DD2  2.0*3  40F32,40F33
 O2C 2210-2222   1800  3000  64*2   1024*2   DD2  2.0*3  40F12,40F13
 O2C 2210-2218HE 1800  2600  64*2   1024*2   DD2  2.0*3  40F12,40F13
 O2C 2220-2224SE 2800  3200  64*2   1024*2   DD2  2.0*3  40F12,40F13
 O2C 8212-8222   2000  3000  64*2   1024*2   DD2  2.0*3  40F12,40F13
 O2C 8212-8218HE 2000  2600  64*2   1024*2   DD2  2.0*3  40F12,40F13
 O2C 8220-8224SE 2800  3200  64*2   1024*2   DD2  2.0*3  40F12,40F13

 Opt = Opteron   O2C = Dual Core   DD2 = DDR2

                     Back To Contents List


 

2008 Processors

Model CPUs Cores MHz MHz KB L1 KB L2 KB L3 HypeT Mem CPUID From To Cache Cache Cache MHz MHz Desktop
Ath 64 1640B 1 2700 64 512 70FF2 Ath 64 X2 4050-5050e 2 2100 2600 2x64 2x512 60FB2 Ath 64 X2 4450-5600B 2 2300 2900 2x64 2x512 60FB2 Ath 64 X2 6500 2 2300 2x64 2x512 2048 100F23 Phe X3 8400-8600 3 2100 2300 3x64 3x512 2048 1x1800 533 100F22 Phe X3 8450-8850 3 2100 2500 3x64 3x512 2048 1x1800 533 100F23 Phe X3 8600-8750B 3 2300 2400 3x64 3x512 2048 1x1800 533 100F23 Phe X3 8250-8450e 3 1900 2100 3x64 3x512 2048 1x1800 533 100F23 Phe X4 9100e 4 1800 4x64 4x512 2048 1x1800 533 100F22 Phe X4 9150-9350e 4 1800 2000 4x64 4x512 2048 1x1800 533 100F23 Phe X4 9550-9750 4 2200 2400 4x64 4x512 2048 1x1800 533 100F23 Phe X4 9850 4 2500 4x64 4x512 2048 1x2000 533 100F23 Phe X4 9850-9950BE 4 2500 2600 4x64 4x512 2048 1x2000 533 100F23 Phe X4 9600-9750B 4 2300 2400 4x64 4x512 2048 1x1800 533 100F23 Mobile Sem SI-40 1 2000 64 512 1x1800 333 200F31 Tur 64 RM-70-RM-74 2 2000 2100 2x64 2x512 1x1800 400 200F31 Tur Ul ZM-80-ZM86 2 2100 2400 2x64 2x1024 1x1800 400 200F31 Ath 64 QL-60-QL-64 2 1900 2100 2x64 2x512 1x1800 333 200F31 Server Opt 1352-1354 4 2100 2200 4x64 4x512 2048 1800 100F20 Opt 1356 4 2300 4x64 4x512 2048 2000 100F20 Opt 2346-2347HE 4 1800 1900 4x64 4x512 2048 1000 1600 100F21-2A Opt 2350-2356 4 2000 2300 4x64 4x512 2048 1000 1800 100F22-23 Opt 2358-2360SE 4 2400 2500 4x64 4x512 2048 1000 2000 100F22-23 Opt 8346-8347HE 4 1800 1900 4x64 4x512 2048 1000 1600 100F21-23 Opt 8350-8356 4 2000 2300 4x64 4x512 2048 1000 1800 100F21-23 Opt 8358-8360SE 4 2400 2500 4x64 4x512 2048 1000 2000 100F22-23 Opt 2376-2380 4 2300 2500 4x64 4x512 6144 1000 2000 100F42 Opt 2382-2384 4 2600 2700 4x64 4x512 6144 1000 2200 100F42 Opt 8378-8380 4 2400 2500 4x64 4x512 6144 1000 2000 100F42 Opt 8382-8384 4 2600 2700 4x64 4x512 6144 1000 2200 100F42 Ath 64 = Athlon 64, Phe = Phenom, Sem = Sempron, Tur = Turion, Opt = Opteron Back To Contents List

2009 Processors

Model CPUs Core MHz MHz KB L1 KB L2 KB L3 HypeT Mem CPUID From To Cache Cache Cache MHz MHz Desktop
Sem 140 1 2700 64 1024 1x2000 100F62 Ath X2 7850 2 2800 2x64 2x512 2048 100F23 Ath II X2 215 2 2700 2x64 2x512 1x2000 533 100F62 Ath II X2 240-250 2 2800 3000 2x64 2x1024 1x2000 533 100F62 Ath II X2 235e-240e 2 2700 2800 2x64 2x1024 1x2000 533 100F62 Ath II X2 250u 2 1600 2x64 2x1024 1x1600 533 100F62 Ath II X2 260u 2 1800 2x64 2x1024 1x1800 533 100F62 Ath II X3 400e-405e 3 2200 2300 3x64 3x512 1x2000 667 100F52 Ath II X3 425-435 3 2700 2900 3x64 3x512 1x2000 667 100F52 Ath II X4 600e-605e 4 2200 2300 4x64 4x512 1x2000 667 100F52 Ath II X4 620-630 4 2600 2800 4x64 4x512 1x2000 667 100F52 Phe II X2 545-550 2 3000 3100 2x64 2x512 6144 1x2000 667 100F42 Phe II X3 700e-705e 3 2800 2000 3x64 3x512 6144 1x2000 667 100F42 Phe II X3 710-740 3 2600 3000 3x64 3x512 6144 1x2000 667 100F42 Phe II X4 900e-905e 4 2400 2500 4x64 4x512 6144 1x2000 667 100F42 Phe II X4 805-820 4 2500 2800 4x64 4x512 4096 1x2000 667 100F42 Phe II X4 910 4 2600 4x64 4x512 6144 1x2000 667 100F42 Phe II X4 920-940 4 2800 3000 4x64 4x512 6144 1x1800 533 100F42 Phe II X4 945-965 4 3000 3400 4x64 4x512 6144 1x2000 667 100F42 Mobile Sem 200U-210U 1 1000 1500 64 256 60FF2 Sem M100 1 2000 64 512 1x1600 400 100F62 Tur Neo X2 L625 2 1600 2x64 2x512 1x800 400 60FB2 Tur II M500-M540 2 2200 2400 2x64 2x512 1x1800 400 100F62 Tur IIU M600-660 2 2400 2700 2x64 2x1024 1x1800 400 100F62 Ath Neo MV-40 1 1600 64 512 1x800 333 60FB2 Ath Neo X2 L325 2 1500 2x64 2x512 1x800 333 60FB2 Ath II M300-M340 2 2000 2200 2x64 2x512 1x1600 400 100F62 Servers Opt HE 2372-2376 4 2100 2300 4x64 4x512 6144 1000 2000 100F42 Opt HE 2379-2381 4 2400 2500 4x64 4x512 6144 2000 2000 100F42 Opt HE 8374-8376 4 2200 2300 4x64 4x512 6144 1000 2000 100F42 Opt HE 8379-8381 4 2400 2500 4x64 4x512 6144 2000 2000 100F42 Opt SE 2386 4 2800 4x64 4x512 6144 1000 2200 100F42 Opt SE 2393 4 3100 4x64 4x512 6144 2200 2200 100F42 Opt SE 8386 4 2800 4x64 4x512 6144 1000 2200 100F42 Opt SE 8393 4 3100 4x64 4x512 6144 2200 2200 100F42 Opt EE 2373-2377 4 2100 2300 4x64 4x512 6144 2000 2000 100F42 Opt 2387-2389 4 2800 2900 4x64 4x512 6144 2200 2200 100F42 Opt 1381-1389 4 2500 2900 4x64 4x512 6144 2200 100F42 Opt HE 2423-2425 6 2000 2100 6x64 6x512 6144 2400 2200 100F80 Opt HE 8425 6 2100 6x64 6x512 6144 2400 2200 100F80 Opt SE 2439 6 2800 6x64 6x512 6144 2400 2200 100F80 Opt SE 8439 6 2800 6x64 6x512 6144 2400 2200 100F80 Opt EE 2419 6 1800 6x64 6x512 6144 2400 2200 100F80 Opt 2427-2435 6 2200 2600 6x64 6x512 6144 2400 2200 100F80 Opt 8431-8435 6 2400 2600 6x64 6x512 6144 2400 2200 100F80 Ath = Athlon, Phe = Phenom, Sem = Sempron, Tur = Turion, Opt = Opteron Back To Contents List

2010 Processors

Model CPUs Core MHz MHz KB L1 KB L2 KB L3 HypeT Mem CPUID From To Cache Cache Cache MHz MHz Desktop
Sem 145-150 1 2800 2900 64 1024 1x2000 100F63 Sem X2 180 2 2400 2x64 2x512 1x2000 100F63 Ath X2 5200+ 2 2300 2x64 2x512 1x2000 100F63 Ath II X2 210-220 2 2600 2800 2x64 2x512 1x2000 533 100F52 Ath II X2 245-270 2 2900 3300 2x64 2x1024 1x2000 533 100F62,63 Ath II X2 270u 2 2000 2x64 2x1024 100F63 Ath II X2 B26-28 2 3200 3400 2x64 2x1024 1x2000 533 100F63 Ath II X3 415e-420e 3 2500 2600 3x64 3x512 1x2000 667 100F53 Ath II X3 440-455 3 3000 3300 3x64 3x512 1x2000 667 100F52,53 Ath II X4 610e-615e 4 2400 2500 4x64 4x512 1x2000 667 100F53 Ath II X4 635-645 4 2900 3100 4x64 4x512 1x2000 667 100F52-A0 Phe II X2 555-565BE 2 3200 3400 2x64 2x512 6144 1x2000 667 100F43 Phe II X2 B57 2 3200 2x64 2x512 6144 1x2000 667 100F43 Phe II X3 B77 3 3200 3x64 3x512 6144 1x2000 667 100F43 Phe II X4 910E 4 2600 4x64 4x512 6144 1x2000 667 100F43 Phe II T X4 840T-960T 4 2900 3000 4x64 4x512 6144 1x2000 667 100FA0 Phe II X4 955-970 4 3200 3500 4x64 4x512 6144 1x2000 667 100F42,43 Phe II X4 B97 4 3200 4x64 4x512 6144 1x2000 667 100F43 Phe II T X6 1035T-1075T 6 2600 3000 6x64 6x512 6144 1x2000 667 100FA0 Phe II T X6 1090T-1100T 6 3200 3300 6x64 6x512 6144 1x2000 667 100FA0 Mobile Sem M140 1 2200 64 512 1x1600 400 100F62 Tur II M560 2 2500 2x64 2x512 1x1800 400 100F62 Tur II N530-N550 2 2500 2600 2x64 2x1024 1x1800 533 100F63 Tur II K625-K665 2 1500 1700 2x64 2x1024 1x1600 Tur II P520-P560 2 2300 2500 2x64 2x1024 1x1800 533 100F63 Ath II Neo K125 1 1700 64 1024 1x1000 100F63 Ath II Neo K325 2 1300 2x64 2x1024 1x1000 100F63 Ath II M360 2 2300 2x64 2x512 1x1600 400 100F62 Ath II N330-N350 2 2300 2400 2x64 2x512 1x1600 533 100F63 Ath II P320-P340 2 2800 2900 2x64 2x512 1x1600 533 100F63 Phe II X2 N620-N640 2 2800 2900 2x64 2x1024 1x1800 100F63 Phe II X2 P650 2 2600 2x64 2x1024 1x1800 100F63 Phe II X2 X620 2 3100 2x64 2x512 1x1800 100F63 Phe II X3 N830-N850 3 2100 2200 2x64 2x512 1x1800 100F53 Phe II X3 P820-P840 3 1800 3x64 3x512 1x1800 100F53 Phe II X4 P920-P970 4 1600 2200 4x64 4x512 1x1800 100F53 Phe II X4 X920 4 2300 4x64 4x512 1x1800 100F53 V Ser V105-V140 1 1200 2300 64 512 1x1600 533 100F63 Servers Opt 4122-4130 4 2200 2300 4x64 4x512 6144 3200 100F81 Opt EE 4162-4164 6 1700 1800 6x64 6x512 6144 3200 100F81 Opt HE 4170-4176 6 2100 2400 6x64 6x512 6144 3200 100F81 Opt 4180-4184 6 2600 2800 6x64 6x512 6144 3200 100F81 Opt HE 6124-6128 8 1800 2000 8x64 8x512 2x6144 3200 100F91 Opt 6128-6136 8 2000 2400 8x64 8x512 2x6144 3200 100F91 Opt HE 6164 12 1700 12x64 12x512 2x6144 3200 100F91 Opt 6168-6174 12 1900 2200 12x64 12x512 2x6144 3200 100F91 Opt SE 6176 12 2300 12x64 12x512 2x6144 3200 100F91 Ath = Athlon, Phe = Phenom, Sem = Sempron, Tur = Turion, Opt = Opteron, Ser = Series T = See Turbo Boost Back To Contents List

2011 Processors

Model CPUs Core MHz MHz KB L1 KB L2 KB L3 HypeT Mem CPUID From To Cache Cache Cache MHz MHz Desktop
Sem 190 2 2500 2x64 2x512 1x2000 100F63 Phe II X2 511-521 2 3400 3500 2x64 2x1024 1x2000 667 100F63 Phe II X2 570 BE 2 3500 2x64 2x512 6144 1x2000 667 100F43 Phe II X2 B59-B60 2 3400 3500 2x64 2x512 6144 1x2200 533 100F43 Phe II X4 840-850 4 3200 3300 4x64 4x512 1x2000 667 100F43 Phe II X4 960-980 4 3300 3700 4x64 4x512 6144 1x2000 667 100F43 Phe II T X4 650T 4 2700 4x64 4x512 4096 1x2000 667 100FA0 Phe II X4 B99 4 3300 4x64 4x512 6144 1x2000 667 100F43 Ath II X2 270 2 3400 2x64 2x1024 1x2000 533 100F63 Ath II X2 B30 2 3600 2x64 2x1024 1x2000 667 100F63 Ath II X3 425e,460 3 2700 3400 3x64 3x512 1x2000 667 100F53 Ath II X4 620e,650 4 2600 3200 4x64 4x512 1x2000 667 100F53 Ath II X4 631-651 4 2600 3000 4x64 4x1024 933 300F10 A4 3300-3420 2 2500 2800 2x64 2x512 800 300F10 A6 T 3500 3 2100 3x64 3x1024 933 300F10 A6 T 3600-3670 4 2100 2200 4x64 4x1024 933 300F10 A6 3650-3670 4 2600 2700 4x64 4x1024 933 300F10 A8 T 3800-3820 4 2400 2500 4x64 4x1024 933 300F10 A8 3850-3870 4 2900 3000 4x64 4x1024 933 300F10 E2 3200 2 2400 2x64 2x512 800 300F10 FX T 4100 4 3600 4x16 2x2048 8192 1x2600 933 600F12 FX T 6100 6 3300 6x16 3x2048 8192 1x2600 933 600F12 FX T 8100-8150 8 2800 3600 8x16 4x2048 8192 1x2600 933 600F12 Mobile Phe II N660 2 3000 2x64 2x1024 1x1800 667 100F63 Phe II N870 3 2300 3x64 3x512 1x1800 667 100F53 Phe II P860 3 2000 3x64 3x512 1x1800 667 100F53 Phe II N970 4 2200 4x64 4x512 1x1800 667 100F53 Phe II X940 4 2400 4x64 4x512 1x1800 667 100F53 Ath II Neo K145 1 1800 64 1024 1x1000 1x533 100F63 Ath II Neo K345 2 1400 2x64 2x1024 1x1000 1x533 100F63 Ath II P360 2 2300 2x64 2x512 1x1600 2x533 100F63 Ath II N370 2 2500 2x64 2x512 1x1600 2x533 100F63 C-Ser C30 1 1200 32 512 1x533 500F10 C-Ser C50-60 2 1000 1000 2x32 2x512 1x533 500F10 E Ser E240 1 1500 32 512 1x667 500F10 E Ser E300-350 2 1300 1600 2x32 2x512 1x533 500F10 E Ser E450 2 1650 2x32 2x512 1x667 500F20 V Ser V160 1 2400 64 512 1x1600 2x533 100F63 Z Ser Z01 2 1000 2x32 2x512 1x533 500F20 Tur II Neo K645-685 2 1600 1800 2x64 2x1024 1x1600 100F63 Tur II N570 2 2700 2x64 2x1024 1x1800 2x533 100F63 A4 3305M 2 1900 2x32 2x512 2x667 300F10 A4 3300M-3320M 2 1900 2000 2x64 2x1024 2x667 300F10 A4 3310MX-3330 2 2100 2200 2x64 2x1024 2x667 300F10 A6 3400M-3420 4 1400 1500 4x64 4x1024 2x933 300F10 A6 3410MX-3430 4 1600 1700 4x64 4x1024 2x933 300F10 A8 3500M-3520 4 1500 1600 4x64 4x1024 2x933 300F10 A8 3510MX-3550 4 1800 2000 4x64 4x1024 2x933 300F10 E2 3000M 2 1800 2x64 2x512 2x667 300F10 Servers Opt T 4226-4238 6 2700 3300 6x16 3x2048 8192 2x3200 2x800 Opt T 4256-4284 8 1600 3000 8x16 4x2048 8192 2x3200 2x800 600F12 Opt 6132 HE 8 2200 8x64 6x512 2x6144 4x3200 4x667 100F91 Opt 6140 8 2600 8x64 6x512 2x6144 4x3200 4x667 100F91 Opt 6166 HE 12 1800 12x64 12x512 2x6144 4x3200 4x667 100F91 Opt 6176 12 2300 12x64 12x512 2x6144 4x3200 4x667 100F91 Opt 6180 SE 12 2500 12x64 12x512 2x6144 4x3200 4x667 100F91 Opt 6204 4 3300 4x16 2x2048 16384 4x3200 4x800 Opt T 6212-6220 8 2600 3000 8x16 4x2048 16384 4x3200 4x800 Opt T 6234-6238 12 2400 2600 12x16 6x2048 16384 4x3200 4x800 Opt T 6262-6282 16 1600 2600 16x16 8x2048 16384 4x3200 4x800 600F12? Ath = Athlon, Phe = Phenom, Sem = Sempron, Tur = Turion, Opt = Opteron, Ser = Series FX = FX Range, T = See Turbo Boost, +G Integrated Graphics Back To Contents List

2012 Processors

Model CPUs Core MHz MHz KB L1 KB L2 KB L3 HypeT Mem CPUID From To Cache Cache Cache MHz MHz Desktop
Ath X2 T 340 2 3200 2x16 1024 2x800 610F01 Ath X4 T 740 4 3200 4x16 2x2048 2x933 610F01 Ath X4 T 750K 4 3400 4x16 2x2048 2x933 610F01 A4 T 5300 2+G 3400 2x16 1024 2x800 610F01 A4 T 5300B 2+G 3400 2x16 1024 2x800 610F01 A6 T 5400B 2+G 3600 2x16 1024 2x933 610F01 A6 T 5400K 2+G 3600 2x16 1024 2x933 610F01 A8 T 5500 4+G 3200 4x16 2x2048 2x933 610F01 A8 T 5500B 4+G 3200 4x16 2x2048 2x933 610F01 A8 T 5600K 4+G 3600 4x16 2x2048 2x933 610F01 A10 T 5700 4+G 3400 4x16 2x2048 2x933 610F01 A10 T 5800B 4+G 3800 4x16 2x2048 2x933 610F01 A10 T 5800K 4+G 3800 4x16 2x2048 2x933 610F01 FirePro T A300-A320 4+G 3400 3800 4x16 2x2048 2x933 610F01 FX T 4130 4 3800 4x16 2x2048 4096 1x2000 2x933 600F12 FX T 4150-4170 4 3800 4200 4x16 2x2048 8192 1x2200 2x933 600F12 FX T 4300 4 3800 4x16 2x2048 4096 1x2000 2x933 600F20 FX T 6120 6 3500 6x16 3x2048 8192 1x2000 2x933 600F12 FX T 6200 6 3800 6x16 3x2048 8192 1x2200 2x933 600F12 FX T 6300 6 3500 6x16 3x2048 8192 1x2000 2x933 600F20 FX T 8300-8350 8 3300 4000 8x16 4x2048 8192 1x2200 2x933 600F20 Mobile Ath II M X4 638-651 4 2700 3000 4x64 4x1024 2x933 300F10 C-Ser T C70 2+G 1000 2x32 2x512 1x533 500F20 Z Ser Z60 2+G 1000 2x32 2x512 1x533 500F?? A4 T 4300M 2+G 2500 2x16 1024 2x800 610F01 A4 T 4355M 2+G 1900 2x16 1024 2x667 610F01 A6 T 4400M 2+G 2700 2x16 1024 2x800 610F01 A6 T 4455M 2+G 2100 2x16 2048 2x667 610F01 A8 T 4500M 4+G 1500 4x16 2x2048 2x800 610F01 A8 T 4555M 4+G 1600 4x16 2x2048 2x667 610F01 A10 T 4600M 4+G 2300 4x16 2x2048 2x800 610F01 A10 T 4655M 4+G 2000 4x16 2x2048 2x667 610F01 E1 1200 2+G 1400 2x32 2x512 1x533 500F20 E2 1800 2+G 1700 2x32 2x512 1x667 500F20 Server Opt T 3250HE-3260HE 4 2500 2700 4x16 2x2048 4096 1x2600 2x933 600F?? Opt T 3280 HE 8 2400 8x16 4x2048 8192 1x2600 2x933 600F?? Opt T 3320 LE 4 1900 4x16 2x2048 8192 1x2600 2x667 610F?? Opt T 3350 HE 4 2800 4x16 2x2048 8192 1x2600 2x933 610F?? Opt T 3365 8 2300 8x16 4x2048 8192 1x2600 2x933 610F?? Opt T 3380 8 2600 8x16 4x2048 8192 1x2600 2x933 610F?? Opt T 43CX 4 2200 4x16 2x2048 4096 2x3200 2x800 610F?? Opt T 43GK HE 8 2600 8x16 4x2048 8192 2x3200 2x800 610F?? Opt T 4310 EE 4 2200 4x16 2x2048 8192 2x3200 2x933 610F?? Opt T 4332 HE 6 3000 6x16 3x2048 8192 2x3200 2x933 610F?? Opt T 4334 6 3000 6x16 3x2048 8192 2x3200 2x933 610F?? Opt T 4340 6 3500 6x16 3x2048 8192 2x3200 2x933 610F?? Opt T 4365 EE 8 2000 8x16 4x2048 8192 2x3200 2x933 610F?? Opt T 4376 HE 8 2600 8x16 4x2048 8192 2x3200 2x933 610F?? Opt T 4386 8 3100 8x16 4x2048 8192 2x3200 2x933 610F?? Opt T 6284 SE 16 2700 16x16 8x2048 16384 4x3200 4x800 600F?? Opt T 6308 4 3500 4x16 2x2048 16384 4x3200 4x800 600F?? Opt T 6320-6328 8 2800 3200 8x16 4x2048 16384 4x3200 4x800 600F?? Opt T 6338P 12 2300 12x16 6x2048 16384 4x3200 4x800 600F?? Opt T 6344-6348 12 2600 2800 12x16 6x2048 16384 4x3200 4x800 600F20 Opt T 6366 HE 16 1800 16x16 8x2048 16384 4x3200 4x800 600F?? Opt T 6370P 16 2000 16x16 8x2048 16384 4x3200 4x800 600F?? Opt T 6376-6378 16 2300 2400 16x16 8x2048 16384 4x3200 4x800 600F?? Opt T 6380 16 2500 16x16 8x2048 16384 4x3200 4x800 600F?? Opt T 6386 SE 16 2800 16x16 8x2048 16384 4x3200 4x800 600F?? Ath = Athlon, Phe = Phenom, Sem = Sempron, Tur = Turion, Opt = Opteron, Ser = Series FX = FX Range, T = See Turbo Boost, +G Integrated Graphics Back To Contents List

2013 Processors

Model CPUs Core MHz MHz KB L1 KB L2 KB L3 HypeT Mem CPUID From To Cache Cache Cache MHz MHz Desktop
Ath X2 T 370K 2 4000 2x16 1024 2x??? 610F31 Ath X4 T 760K 4 3800 4x16 2x2048 2x933 610F31 Ath II X2 280 2 3600 2x64 2x1024 1x2000 100F63 A4 T 4000 2+G 3000 2x16 1024 2x667 610F31 A4 T 6300 2+G 3700 2x16 1024 2x??? 610F31 A4 T 6300B 2+G 3700 2x16 1024 2x800 610F31 A6 T 6400B 2+G 3900 2x16 1024 2x933 610F01 A6 T 6400K 2+G 3900 2x16 1024 2x933 610F01 A8 T 6500 4+G 3500 4x16 2x2048 2x933 610F31 A8 T 6500B 4+G 3500 4x16 2x2048 2x933 610F31 A8 T 6500T 4+G 2100 4x16 2x2048 2x933 610F31 A8 T 6600K 4+G 3900 4x16 2x2048 2x933 610F31 A10 T 6700 4+G 3700 4x16 2x2048 2x933 610F31 A10 T 6700T 4+G 2500 4x16 2x2048 2x933 610F31 A10 T 6790K 4+G 4000 4x16 2x2048 2x933 610F31 A10 T 6800B 4+G 4100 4x16 2x2048 2x1066 610F31 A10 T 6800K 4+G 4100 4x16 2x2048 2x1066 610F31 FX T 6350 6 3900 6x16 3x2048 8192 1x2000 2x933 600F20 FX T 9370-9590 8 4000 4700 8x16 4x2048 8192 1x2400 2x933 600F20 Mobile A4 1200 2+G 1000 2x32 1024 1x533 700F?? A4 1250 2+G 1000 2x32 1024 1x667 700F?? A4 1350 4+G 1000 4x32 2048 1x533 700F?? A4 5000 4+G 1500 4x32 2048 1x800 700F01 A4 T 5145M 2+G 2000 2x16 1024 2x667 610F31 A4 T 5150M 2+G 2700 2x16 1024 2x800 610F31 A6 T 1450 4+G 1000 4x32 2048 1x533 700F01 A6 5200 4+G 2000 4x32 2048 1x800 700F01 A6 T 5345M 2+G 2200 2x16 1024 2x667 610F31 A6 T 5350M 2+G 2900 2x16 1024 2x800 610F31 A6 T 5357M 2+G 2900 2x16 1024 2x800 610F31 A8 T 5545M 4+G 1700 4x16 2x2048 2x667 610F31 A8 T 5550M 4+G 2100 4x16 2x2048 2x800 610F31 A8 T 5557M 4+G 2100 4x16 2x2048 2x800 610F31 A10 T 5745M 4+G 2300 4x16 2x2048 2x667 610F31 A10 T 5750M 4+G 2500 4x16 2x2048 2x933 610F31 A10 T 5757M 4+G 2500 4x16 2x2048 2x800 610F31 E1 1500 2+G 1480 2x32 2x512 1x533 500F20 E1 2100-2500 2+G 1000 1400 2x32 1024 1x667 700F01 E2 2000 2+G 1750 2x32 2x512 1x667 500F20 E2 3000 2+G 1650 2x32 1024 1x800 700F01 Server Opt T 3320EE 4 1900 4x16 2x2048 8192 1x2600 2x667 610F?? Opt T 3350HE 4 2800 4x16 2x2048 8192 1x2600 2x933 610F?? Opt T 3365 8 2300 8x16 4x2048 8192 1x2600 2x933 610F?? Opt T 3380 8 2600 8x16 4x2048 8192 1x2600 2x933 610F?? Ath = Athlon, Phe = Phenom, Sem = Sempron, Tur = Turion, Opt = Opteron, Ser = Series FX = FX Range, T = See Turbo Boost, +G Integrated Graphics Back To Contents List

2014 Processors

Model CPUs Core MHz MHz KB L1 KB L2 KB L3 HypeT Mem CPUID From To Cache Cache Cache MHz MHz Desktop
A4 T 4020 2+G 3200 2x16 1024 2x667 610F31 A4 T 6320 2+G 3800 2x16 1024 2x800 610F31 A6 T 6400K 2+G 4000 2x16 1024 2x933 610F01 A10 T 7700K 4+G 3400 4x16 2x2048 2x933 630F01 A10 T 7850K 4+G 3700 4x16 2x2048 2x933 630F01 Mobile A4 5000 4+G 1550 4x32 2048 1x800 700F01 E1 2150 2+G 1000 2x32 1024 1x800 700F01 E2 3800 4+G 1300 4x32 2048 1x800 700F01 Ath = Athlon, Phe = Phenom, Sem = Sempron, Tur = Turion, Opt = Opteron, Ser = Series FX = FX Range, T = See Turbo Boost, +G Integrated Graphics Back To Contents List

Turbo Boost

Norm Boost Norm Boost MHz MHz MHz MHz
Phe II 650T 2700 3200 Opt 3250EE 2500 3500 Phe II 840T 2900 3200 Opt 3260EE 2700 3700 Phe II 960T 3000 3400 Opt 3280HE 2400 3500 Phe II 1035T 2600 3100 Opt 3320E 1900 2500 Phe II 1045T 2700 3200 Opt 3350HE 2800 3800 Phe II 1055T 2800 3300 Opt 3365 2300 3300 Phe II 1065T 2900 3400 Opt 3380 2600 3600 Phe II 1075T 3000 3500 Phe II 1090T 3200 3600 Opt 4226 2700 3100 Phe II 1100T 3300 3700 Opt 4228HE 2800 3600 Opt 4230 2900 3700 A4-3300M 1900 2500 Opt 4234 3100 3500 A4-3305M 1900 2500 Opt 4238 3300 3700 A4-3310MX 2100 2500 Opt 4240 3400 3800 A4-3320M 2000 2600 Opt 4256EE 1600 2800 A4-3330MX 2200 2600 Opt 4274HE 2500 3500 A4-5145M 2000 2600 Opt 4276HE 2600 3600 A4-5150M 2700 3300 Opt 4280 2800 3500 A4-4000 3000 3200 Opt 4284 3000 3700 A4-4020 3200 3400 Opt 4310EE 2200 3000 A4-5300 3400 3600 Opt 4332HE 3000 3700 Opt 4334 3100 3500 A6-1450 1000 1400 Opt 4340 3500 3800 A6-3400M 1400 2300 Opt 4376HE 2600 3600 A6-3410MX 1600 2300 Opt 4386 3100 3800 A6-3420M 1500 2400 A6-3430MX 1700 2400 Opt 6212 2600 3200 A6-5345M 1700 2700 Opt 6220 3000 3600 A6-5350M 2900 3500 Opt 6234 2400 3000 A6-5357M 2900 3500 Opt 6238 2600 3200 A6-3500 2100 2400 Opt 6262HE 1600 2900 A6-3600 2100 2400 Opt 6272 2100 3000 A6-3620 2200 2500 Opt 6274 2200 3100 A6-5400K 3600 3800 Opt 6276 2300 3200 A6-6400K 3900 4100 Opt 6278 2400 3300 Opt 6282SE 2600 3300 A8-3500M 1500 2400 Opt 6284 2700 3400 A8-3510MX 1800 2500 Opt 6320 2800 3300 A8-3520M 1600 2500 Opt 6328 3200 3800 A8-3530MX 1900 2600 Opt 6344 2600 3200 A8-3550MX 2000 2700 Opt 6348 2800 3400 A8-5545M 2100 2900 Opt 6376 2300 3200 A8-5550M 2100 3100 Opt 6378 2400 3300 A8-5557M 2100 3100 Opt 6380 2500 3400 A8-3800 2400 2700 Opt 6338P 2300 2800 A8-3820 2500 2800 Opt 6366HE 1800 3100 A8-5500 3200 3700 Opt 6370P 2000 2500 A8-5600K 3600 3900 Opt 6386SE 2800 3500 A8-6500 3500 4100 A8-6500T 2100 3100 A8-6600K 3900 4200 A10-5745M 2100 2900 A10-5750M 2500 3500 A10-5757M 2500 3500 A10-5700 3400 4000 A10-5800K 3800 4200 A10-6700 3700 4300 A10-6700T 2500 3500 A10-6790 4000 4300 A10-6800K 4100 4400 A10-7700K 3400 3800 A10-7850K 3700 4000 FX-4100 3600 3800 FX-4130 3800 3900 FX-4170 4200 4300 FX-4300 3800 4000 FX-4350 4200 4300 FX-6100 3300 3900 FX-6200 3800 4100 FX-6300 3500 4100 FX-6350 3900 4200 FX-8100 2800 3700 FX-8120 3100 4000 FX-8150 3600 4200 FX-8320 3500 4000 FX-8350 4000 4200 FX-9370 4400 4700 FX 9590 4700 5000 C-Ser C-60 1000 1333 C-Ser C-70 1000 1333 E2-3000M 1800 2400

Back To Contents List


Cyrix




 CPU            MHz   MHz KB L1  KB L2     Type L2     FSB  Typical
               From    To Cache  Cache       Cache     MHz  RAM

 Cyrix          120   200   16  256-512    External  60-66  SDRAM
 Cyrix MX       150   233   64      512    External     66  SDRAM
 Cyrix M2       225   333   64 512-1024    External  75-83  SDRAM

Back To Contents List




3.

Benchmark Results Used

CPUID (WhatCPU.zip) has tests using 1, 2, 3 and 4 registers, simply
adding 1. Tests are on integers, 32 bit SP and 64 bit DP floating
point, MMX 32 bit integers, SSE SPFP, 3DNow SPFP and SSE2 DPFP.
Assembly code loop has 20 adds and decrement/jump. The latter are
included in instruction count for integer speed.

BusSpd2K (.zip) is read only using streamed sequential integer data
using 64 AND from memory integer instructions and 512 MMX MOV
64 bit instructions in the assembly code timed loops. The MMX test
is intended to show maximum data transfer rate from memory.

RandMem (.zip) uses C code with of eight & xi[xi[i+0]] | xi[xi[i+2]]
statements (FP +, -, *) reading data or eight xi[xi[i+2]] =
xi[xi[i+0]] statements for read/write. The pair are used for
reading/writing 128 bytes in the loop with the indexing producing
either sequential or random accessing. Four tests cover 32 bit
integer operation and four 64 bit double precision floating point.
With indexing calculations, this benchmarks has more instructions
per word read or written than the other memory tests. Data transfer
rate may be less but the MIPS/MHz ratio higher.

BenchNT.zip provides Whetstone, Dhrystone, Linpack and Livermore
Loops Classic benchmarks, representing old code much with a small
number of instructions in loops. Benchmark codes are provided
compiled with full optimisation and no optimisation.

SSE3DNow (.zip) uses the same read and read/write functions as
MemSpeed — C code — s=s+x[m]*y[m] and x[m]=x[m]+y[m]. The tests
are run via the C code in Single Precision Floating Point with 16
unrolled statements in the inner loop (read 128 bytes, read/write
64/64 bytes). When available, the tests are also run using assembly
instructions for SSE (SP), 3DNow (SP) and SSE2 (DP) handling the
same amount of data in the inner loop.

FFTGraf (.zip) calculates Fast Fourier Transforms using single and
double precision floating point numbers. Version 1 uses optimised
C code with later versions using assembly code instructions. Memory
accessing is on a random/skipped sequential basis where performance
suffers due to burst reading from RAM. Earlier systems read in 32
byte bursts with later ones using 64 bytes with potentially slower
speed on this and RandMem benchmarks.

BusSpd2K, RandMem and SSE3DNow run tests with increasing memory
demands to measure performance via caches and RAM. Similarly,
FFTGraf uses increasing FFT sizes.

Back To Contents List

4. CPU/L1 Cache Speed %MIPS/MHz — 32 bit integers





 CPUM is CPUID
 BUS1 and BUS2 are BusSpd2K ANDing to 1 and 2 registers
 RSRD and RSWR are RandMem serial read, read/write
 DOPT and DNOP are Dhrystone 2 Optimised and Non-optimised
 WHET is from Whetstone average integer MIPS
 MMX1 is CPUID and MMX2 BusSpd2K

 CPU         CPUM BUS1 BUS2 RSRD RSRW DOPT DNOP WHET MMX1 MMX2
       
 80486         90   45   47   53   45   53   19   44  N/A     
 Pentium      198   49   95  114   89  135   29   98  N/A     
 Pentium Pro  196   95   95  181   57  156   45  157  N/A     
 Pentium MMX  200   49   96  121   96  137   30  105  363  197
 Celeron      196   98   96  186   89  160   45  159  292  196
 Pentium II   196   97   97  186   89  160   45  159  293  196
 Pentium III  197   97   98  186   89  160   45  159  289  197
 Celeron M    196   97   99  193   90  176   50  156  292  199
 Pentium M    196   97   99  198   91  211   52  181  286  199
 Pentium 4    287   95   93  198   82  120   14   47  200  187
 Pentium 4E/D 275   94   93  178   69  118   19   63  200  190
 Atom M       199   94   93   91   74  114   46   95  347  195
 Celeron C2 M 288   98   98  189  134  264   52  176  364  196
 Core 2 Duo M 293   99   99  130  155  271   53  178  365  197
 Core 2 Duo   293   99   99  204  146  269   52  180  363  197

 Core i7 #3   281   48   96  196  140  283   54  168  383  220
 Core i7 #1   295   49   99  193   79  288   53  151  367  198
 Core i5 #1   272   90  186  187  126  207   50  181  378  383
 Core i7 $$   315  100  188  348  203  307   52  188  394  394

 Core i7 #4   308   52  105  214  154  310   59  184  420  241
 Core i7 #2   364   61  122  238   98  356   66  187  454  245
 Core i5 #2   391  130  267  268  181  297   72  260  543  551

 i7 4820K $$ CPU at 3. 9   GHz, Turbo Boost, non-boost 3.7 GHz
 i7 860   #1 CPU at 3.466 GHz Turbo Boost, #2 based on non-boost 2.8 GHz
 i7 930   #3 CPU at 3.066 GHz Turbo Boost, #4 based on non-boost 2.8 GHz
 i5 2467M #1 CPU at 2.3   GHz Turbo Boost, #2 based on non-boost 1.6 GHz

 AMD K6X      197   94   96  130  109  144   22   99  197  197
 Duron        244   99  187  129   93  167   61  160  399  380
 Athlon       244   99  184  129   93  167   61  160  399  376
 Athlon XP    244  100  187  129   93  167   61  160  389  379
 Turion 64    292   99  191  137   97  197   61  169  395  395
 Athlon 64    293  100  193  126   92  200   62  170  400  397
 Phenom II    295  100  188  225  102  254   75  167  400  390

 Cyrix MX           86  128   86   69  135   30   85       163
 



Note: assuming CPUs of the same MHz, Pentium 4 is faster than
AMD 64 on only one example and AMD CPUs have larger L1 cache.
Pentiums could also be faster than P4s, probably due to shorter
pipelines. Pentium 4E has even longer pipelines and performance
characteristics are different to earlier P4s, some tests producing
slower results and others faster.
Pentium M/Celeron M and Core 2 Duo CPUs show superior performance
to the P4 range on many of these tests, influenced by shorter
pipelines.

This is the first example with i7 results, mainly showing exceptionally good MIPS/MHz results if we were unaware that the processor is running at a higher Turbo Boost speed. Assuming that all tests are run at the elevated speed, on the basis of these comparisons, the i7 processors are no better than those for Core 2 and much worse in two cases, maybe due to the particular code used in the benchmarks. The first is using BusSpd2k streaming data from L1 cache and ANDing to the same register. Here, performance has degraded to old Pentium standards, where ANDing to two registers is twice as fast. The other case is reading and writing using RandMem, where performance has returned to Pre-Core 2 levels.

Results for a newer i7, running at the same GHz, have been added, but this has lower Turbo Boost frequencies. However, it shows some significant improvement in tests involving reading/writing (RW — comparing #3 and #1).

The Phenom II performance profile is at least as good as earlier AMD processors. Adding Turbo Boost would make it faster than i7, based on average speed of these tests.

Back To Contents List

5. CPU/L1 Cache Speed %MFLOPS/MHz — 32/64 bit SP/DP floating point






 CPUF is CPUID where SP and DP results are usually the same
 SSRD and SSRW are SSE3DNow normal SP Read and Read/Write
 RSRD is RandMem serial read, usually same as random read
 WHET is Whetstone SP benchmark average
 LMAX and LAVG are Livermore Loops maximum and average     
 FFSP and FFDP are from FFTGraf version 1 for smallest FFTs
 FFS2 and FFD2 are from FFTGraf optimised version 2

 CPU         CPUF SSRD SSRW RSRD WHET LMAX LAVG FFSP FFDP FFS2 FFD2
                                                        
 80486         8     8    5    6    6    8    4    5    4    5    4
 Pentium      94    33    9   22   17   33   12   18   11   17   14
 Pen Pro     100    66   18   33   21   60   17   24   19   40   30
 Pent MMX     95    39   11   24   17   34   13   21   17   19   16
 Celeron     100    65   17   33   21   59   18   37   31   46   40
 PII         100    66   17   33   21   59   18   37   28   44   33
 PIII        100    66   18   33   21   59   18   37   32   46   42
 Celeron M    90    90   19   43   21   87   21   46   39   56   50
 Pentium M    90    90   19   43   21   88   22   45   39   55   49
 P4           80    32    9   28    9   60   11   26   19   38   32
 P4E/D        66    51   14   22    8   50   10   25   23   29   29
 Atom M       50    33    9   17   10   27   10    6   13    7   14
 Celeron C2M  98    86   25   42   21   89   22   50   42   61   52
 Core 2 DuoM 100    83   23   40   21   90   23   37   42   61   53
 Core 2 Duo  100    91   23   43   21   93   22   52   43   63   54
 Core i7 #3   96    99   25   40   19   90   24   53   43   67   62
 Core i7 #1  100    99   16   40   19   91   24   47   39   61   54
 Core i5 #1   97   124   37   36   19  101   19   64   57   77   72
 Core i7 $$   99   126   41   60   19  141   28   65   59   85   80

 Core i7 #4  105   108   27   44   21   98   26   58   48   74   68
 Core i7 #2  124   122   20   49   24  112   30   58   48   76   67
 Core i5 #2  139   178   55   52   28  145   27   93   81  111  104

 i7 4820K $$ CPU at 3. 9   GHz, Turbo Boost, non-boost 3.7 GHz
 i7 860   #1 CPU at 3.466 GHz Turbo Boost, #2 based on non-boost 2.8 GHz
 i7 930   #3 CPU at 3.066 GHz Turbo Boost, #4 based on non-boost 2.8 GHz
 i5 2467M #1 CPU at 2.3   GHz Turbo Boost, #2 based on non-boost 1.6 GHz

 AMD K6X      47    29    9   15   15   36   12   14   14
 Duron       100    87   23   34   17  113   20   44   38   60   59
 Athlon      100    86   22   34   17  113   20   44   38          
 Athlon XP   100    88   23   34   17  113   20   47   42   65   58
 Turion 64   100    84   22   35   17  114   21   46   40   64   57
 Athlon 64   100    88   23   34   17  116   21   49   44   64   59
 Phenom II   100    95   22   43   15  130   21   48   42   70   66

 Cyrix MX                     11   10   18    8                    




AMD CPUs show superior performance to P4 of same MHz on all these
floating point tests, average 1. 9 times. They also have a larger
L1 cache. Pentium M/Celeron M and Core 2 Duo CPU scores are similar
to AMDs but L1 cache sizes are smaller. The Phenom II profile is a little better than earlier processors and at least comparable to i7 boosted MFLOPS/MHz.

Assuming that the CPU is running at Turbo Boost GHz, i7 performance characteristics are similar to Core 2 but there is some degradation with reading and writing using SSE3DNow, corrected on the newer 930 model.
Core i7 #1/2 was probably running at a lower Turbo Boost level for the FFT tests, but would also be affected by the slow read/write performance.

Back To Contents List

6. CPU/L1 Cache Speed %MFLOPS/MHz — SSE SP, 3DNow SP, SSE2 DP FP






 xxSP is either 32 bit SSE or 3DNow
 xxDP is 64 bit SSE2
 CPxx is CPUID
 RDxx is SSE3DNow Read and RWxx Read/Write
 FFxx is FFTGraf version 3 single and double precision

 80486         -                                    
 Pentium       -                                    
 Pen Pro       -                                    
 Pent MMX      -                                    
 Celeron       -                                    
 PII           -                                    
 Cyrix MX      -                                    

 CPU         CPSP CPDP RDSP RDDP RWSP RWDP FFSP FFDP

 PIII        184     -  160    -   76    -   54    -
 Celeron M   187    94  191   89   93   48   61   40
 Pentium M   189    94  193   90   97   49   60   40
 P4          200   100  122   61   65   33   38   32
 P4E/D       200   100  146   74   86   43   34   31
 Atom M      319    32  113   24   95   24   15   18
 Celeron C2M 399   200  244  122  186   96   83   67
 Core 2 DuoM 400   200  252  128  193   96   88   69
 Core 2 Duo  400   200  264  132  198   99   93   72
 Core i7 #3  383   192  251  125  187   94  102   75
 Core i7 #1  402   201  262  128  168   96   70   54
 Core i5 #1  391   196  258  130  243  121  122   97
 Core i7 $$  396   198  266  133  263  139  112   83

 Core i7 #4  420   210  274  137  205  102  112   83
 Core i7 #2  497   248  323  158  207  119   87   67
 Core i5 #2  562   281  371  196  350  174  175  139

 i7 4820K $$ CPU at 3. 9   GHz, Turbo Boost, non-boost 3.7 GHz
 i7 860   #1 CPU at 3.466 GHz Turbo Boost, #2 based on non-boost 2.8 GHz
 i7 930   #3 CPU at 3.066 GHz Turbo Boost, #4 based on non-boost 2.8 GHz
 i5 2467M #1 CPU at 2.3   GHz Turbo Boost, #2 based on non-boost 1.6 GHz

 AMD K6X     199     -   96    -   81    -   ??    -
 Duron       199     -  177    -  105    -   63    -
 Athlon      200     -  171    -  102    -   63    -
 Athlon XP*  200     -  196    -   99    -   63    -
 Turion 64+  200   100  187   90   96   48   63   44
 Athlon 64+  197   100  194   97   99   50   71   44
 Phenom II   400   200  193   97  191   95   95   67

 - Extensions N/A                        
 * has SSE and 3DNow, similar performance
 + has SSE, 3DNow and SSE2               




Again AMD performance is superior to P4s but similar to
Pentium M/Celeron M. When introduced, Core 2 scores were by far the best
on these SSE/SSE2 tests. Again assuming i7 run at Turbo Boost GHz, speeds reading cached data are comparable to Core 2 but slower when reading and writing.

AMD performance on SSE/SSE2 has been doubled with Phenom, in some cases and is, on average, as good as i7 Turbo Boost on the basis of MFLOPS/MHz.
Again, Core i7 #1/2 was probably running at a lower Turbo Boost level for the FFT tests but would also be affected by the slow read/write performance.

Back To Contents List

7. CPU/L2 Cache Speed %MIPS/MHz — 32 bit integers





 BUS2 is BusSpd2K ANDing to 2 registers
 RSRD is RandMem serial read
 RSWR is RandMem serial read/write
 RRRD is RandMem random read
 MMX2 is BusSpd2K

 CPU         BUS2 RSRD RSWR RRRD MMX2

 80486         11   19    9   10
 Pentium       29   48   24   20
 Pentium Pro   57  135   49   62 
 Pentium MMX   29   54   25   24   33
 Celeron       54  122   63   75   91
 Celeron 2     61  147   81  123  106
 Pentium II    19   93   26   48   30
 Pentium III   19   93   26   48   30
 Pentium IIIE  61  148   81  123  107
 Celeron M     63  143   75   96  108
 Pentium M     63  146   76   98  108
 Pentium 4     69  150   42   83  106
 Pentium 4E/D  63  117   36   64  111
 Atom M        57   74   53   25   75
 Celeron C2 M  85  171  132   91  110
 Core 2 Duo M  85  174  136   92  110
 Core 2 Duo    85  179  138   95  110
 Core i7 #3    88  184  129  107  118
 Core i7 #1    90  178   71   95  121
 Core i5 #1   160  207  120  128  186
 Core i7 $$   170  317  195  195  187

 Core i7 #4    96  201  142  117  129
 Core i7 #2   111  220   87  117  150
 Core i5 #2   230  298  173  184  268
 
 i7 4820K $$ CPU at 3. 9   GHz, Turbo Boost, non-boost 3.7 GHz
 i7 860   #1 CPU at 3.466 GHz Turbo Boost, #2 based on non-boost 2.8 GHz
 i7 930   #3 CPU at 3.066 GHz Turbo Boost, #4 based on non-boost 2.8 GHz
 i5 2467M #1 CPU at 2.3   GHz Turbo Boost, #2 based on non-boost 1.6 GHz

 AMD K62       21   62   20   13   21
 AMD K62+      63  107   79   29   82
 Duron         55   89   56   54   74
 Athlon        19   40   19   16   30
 Athlon TB     63   93   60   55   80
 Athlon XP     63   93   60   55   80
 Turion 64     72   78   50   70   80
 Athlon 64     78   91   57   81  121
 Phenom II    127  195   96  118  186

 Cyrix MX           45   22   22   38
 
 L3 Cache Results
 CPU         BUS2 RSRD RSWR RRRD MMX2

 Core i7 #3    85  176  118   43  113
 Core i7 #1    76  156   67   38  117
 Core i5 #1   147  170   90   54  156
 Core i7 $$   159  308  163   77  170

 Core i7 #4    93  193  129   47  124
 Core i7 #2    93  193   83   47  145
 Core i5 #2   211  245  129   78  224

 Phenom II     80  145   82   20   98



Pentium 4 is faster than AMD CPUs of the same MHz up to Athlon
XP on these L2 cache tests. Athlon 64 shows improvements on
these speeds. Core 2 Duo is better than both P4 and Athlon 64
on most tests and has a much larger L2 cache.

Relative Turbo Boosted i7 to Core 2 results are similar to those using L1 cache, with RandMem reading and writing being much slower. All Phenom speeds are faster than older AMD processors, L2 cache efficiency being much higher, and MIPS/MHz calculations are now better than i7 using Turbo Boost. Phenom and i7 speeds via L3 cache are also shown.
See above comments for slow Core i7 #1/2 results for reading/writing.

Back To Contents List

8. CPU/L2 Cache Speed %MFLOPS/MHz — 32/64b SP/DP floating point






 LINP is Lipack (Large L1 cache helps)                        
 SSRD and SSRW are SSE3DNow normal SP Read and Read/Write     
 RSRD is RandMem serial read, usually same as random read     
 FFSP and FFDP are from FFTGraf version 1 for FFTs that use L2
 FFS2 and FFD2 are from FFTGraf optimised version 2           

 CPU         LINP SSRD SSRW RSRD FFSP FFDP FFS2 FFD2
                                                                
 80486          4    5    2    3    5    4    5    4
 Pentium       13   17    6    7   12    9   16   13
 Pentium Pro   24   60   13   26   20   19   39   30
 Pentium MMX   12   23    7    9   12   11   16   13
 Celeron       27   52   16   17   25   22   40   33
 Celeron 2     31   56   17   17   30   27          
 Pentium II    15   40   11   11   16   13   26   18
 Pentium III   15   40   11   11   16   13   26   18
 Pentium IIIE  31   56   17   18   30   27   44   39
 Celeron M     42   70   16   29   31   29   50   45
 Pentium M     45   71   16   31   31   29   50   45
 Pentium 4     28   31    9   30   23   18   39   32
 Pentium 4E/D  21   40   12   21   22   20   21   22
 Atom M        11   28    8   14   12   11   15   14
 Celeron C2 M  55   87   19   35   32   31   52   48
 Core 2 Duo M  55   81   21   34   32   31   52   48
 Core 2 Duo    59   87   21   37   33   31   52   48
 Core i7 #3    58   90   23   36   39   36   66   59
 Core i7 #1    58   90   17   33   35   32   58   52
 Core i5 #1    46  121   36   42   50   46   81   73
 Core i7 $$    69  114   39   61   50   48   84   77

 Core i7 #4    63   98   25   40   42   39   72   65
 Core i7 #2    72  111   22   40   43   39   71   64
 Core i5 #2    66  174   52   60   72   67  116  105

 i7 4820K $$ CPU at 3. 9   GHz, Turbo Boost, non-boost 3.7 GHz
 i7 860   #1 CPU at 3.466 GHz Turbo Boost, #2 based on non-boost 2.8 GHz
 i7 930   #3 CPU at 3.066 GHz Turbo Boost, #4 based on non-boost 2.8 GHz
 i5 2467M #1 CPU at 2.3   GHz Turbo Boost, #2 based on non-boost 1.6 GHz

 AMD K62       12              8    7    5          
 AMD K63       14   23    7   11                    
 Duron         38   40   12   14   16   15   26   16
 Athlon        36              8                    
 Athlon TB     38   40   12   20   16   15   28   28
 Athlon XP     38   40   12   20   16   15   37   29
 Turion 64     37   43   12   21   16   15   42   28
 Athlon 64     38   48   12   22   19   19   45   32
 Phenom II     47   94   21   43   22   20   52   41

 Cyrix MX      11              7                    

 L3 Cache Results
 CPU              SSRD SSRW RSRD FFSP FFDP FFS2 FFD2

 Core i7 #3         88   22   34   27   26   58   53
 Core i7 #1         89   17   35   25   24   52   48
 Core i5 #1        119   36   38   35   33   70   57
 Core i7 $$        113   38   57   33   31   69   63

 Core i7 #4         96   24   38   30   28   64   58
 Core i7 #2        110   21   43   31   29   65   59
 Core i5 #2        171   52   54   50   48  101   82

 Phenom II          62   19   26   17   16   40   34




Latest AMD CPUs have similar average performance to P4s of the same
MHz, the former benefiting from faster floating point and the latter
from more efficient L2 cache. Pentium M/Celeron M are relatively
better but top marks go to Core 2 Duo.

The new i7 processor has similar characteristics as Core 2, assuming that Turbo Boost is used. The more efficient L2 cache improves Phenom relative score with some better than i7. With data in L3 cache, the i7 has the edge.
See above comments for slow Core i7 #1/2 results for reading/writing and with FFTs.

Back To Contents List

9. CPU/L2 Cache Speed %MFLOPS/MHz — SSE SP, 3DNow SP, SSE2 DP FP





 xxSP is either 32 bit SSE or 3DNow, xxDP is 64 bit SSE2
 RDxx is SSE3DNow Read and RWxx Read/Write
 FFxx is FFTGraf version 3 single and double precision

 CPU          RDSP RDDP RWSP RWDP FFSP FFDP

 Pentium III          -         -         -
 Pentium IIIE  106    -   42    -   52    -
 Celeron M     110   55   42   21   51   36
 Pentium M     110   55   40   20   51   36
 Pentium 4     118   60   46   23   40   34
 Pentium 4E/D  139   69   54   27   36   30
 Atom M         67   20   38   17   28   16
 Celeron C2 M  171   88   85   42   78   60
 Core 2 Duo M  175   86   80   42   79   60
 Core 2 Duo    178   87   86   43   79   61
 Core i7 #3    225  113  104   52   98   69
 Core i7 #1    204  115  105   51   69   52
 Core i5 #1    256  130  154   74  115   78
 Core i7 $$    266  132  162   81  119   92

 Core i7 #4    246  123  113   57  107   76
 Core i7 #2    252  142  130   63   85   64
 Core i5 #2    368  187  222  106  166  112

 i7 4820K $$ CPU at 3. 9   GHz, Turbo Boost, non-boost 3.7 GHz
 i7 860   #1 CPU at 3.466 GHz Turbo Boost, #2 based on non-boost 2.8 GHz
 i7 930   #3 CPU at 3.066 GHz Turbo Boost, #4 based on non-boost 2.8 GHz
 i5 2467M #1 CPU at 2.3   GHz Turbo Boost, #2 based on non-boost 1.6 GHz

 AMD K62              -         -         -
 AMD K63        62    -   36    -         -
 Duron          64    -   27    -   27    -
 Athlon               -         -         -
 Athlon TB      68    -   26    -   30    -
 Athlon XP      68    -   26    -   37    -
 Turion 64      73   35   21   11   43   25
 Athlon 64      94   45   25   12   47   28
 Phenom II     195   98   72   37   65   34

                     - Extensions N/A
 L3 Cache Results
 CPU          RDSP RDDP RWSP RWDP FFSP FFDP

 Core i7 #3    188   94   75   38   82   58
 Core i7 #1    171   93   76   37   57   43
 Core i5 #1    218  115   99   51   92   74
 Core i7 $$    225  113  100   48   94   74

 Core i7 #4    206  103   82   41   90   63
 Core i7 #2    211  115   94   46   71   54
 Core i5 #2    314  165  142   74  132  106

 Phenom II      90   43   40   20   48   29




Performance of these SIMD streaming instructions is superior on the
P4 versus AMD CPUs of the same MHz. Athlon 64 shows improvements
over earlier AMD CPUs. Again, Core 2 Duo was best at the time.
Core i7 provides further relative gains and is still better than the vastly improved Phenom. This relativity is increased further with data in L3 cache.
See above comments for slow Core i7 #1/2 results for reading/writing and FFTs.
Back To Contents List

10. RAM Speed %MIPS/MHz — 32 bit integers

Performance via data in RAM may also depend on CPU MHz besides
RAM/bus speeds. This can result in a reduction in %MIPS/MHz with
higher speed CPUs. There can also be wide variations according to
mainboard/chipset.




 BUS2 is BusSpd2K ANDing to 2 registers
 RSRD is RandMem serial read
 RSWR is RandMem serial read/write
 RRRD is RandMem random read
 MMX2 is BusSpd2K MMX instructions

 CPU            MHz    RAM BUS2 RSRD RSWR RRRD MMX2

 80486           66           9   18    6    5     
 Pentium        100          18   31   13    6     
 Pentium Pro    200          30   36   14    9     
 Pentium MMX    200          17   34   16    6   17
 Celeron A      300     66   23   42   14   11   37
 Celeron A      550     66   14   26   10    8   20
 Celeron 2      566     66   15   27   11    8   23
 Celeron 2      800  PC100   14   25    9    6   23
 Pentium II     450  PC100   18   37   12   11   27
 Pentium III    450  PC100   18   37   12   11   27
 Pentium III    800  PC100   15   34    9    9   24
 Pentium IIIEB  666  PC133   17   32   10    8   24
 Pentium IIIEB 1000  PC133   15   28    6    6   23
 Celeron M     1295               44   13    4     
 Pentium M     1862 PC2700D  31   62   16   10   34
 Pentium 4     1400  PC800   24   52   17    4   29
 Pentium 4     2400  PC800   16   34   11    3   20
 Pentium 4N    2533 PC1066   21   43   15    4   23
 Pentium 4N    1800 PC2100   20   43   13    3   23
 Pentium 4N    2533 PC2100   16   34    9    2   17
 Pentium 4N    3000 PC2700   18   37    8    2   19
 Pentium 4N    3300 PC3200D  23   49   19    3   26
 Pentium 4E/D  3000 PC3200D  30   65   21    3   32
 Atom M        1600 DD2533   47   71   25    2   51
 Celeron C2 M  2000 DD2533D  33   84   22    7   44
 Core 2 Duo M  1830 DD2666D  50  104   30   11   50
 Core 2 Duo XX 2400 DD2533D  45   95    9    4   51
 Core 2 Duo    2400 DD2533D  45  102   29    9   54
 Core 2 Duo    2400 DD2800D  51  109   35   11   60
 Core i7 #3    3066 D31067D  64  131   63   17   68
 Core i7 #1    3460 D31333D  68  125   54   17   71
 Core i5 #1    2300 D31333D 103  148   86   12  112
 Core i7 $$    2900 D31600Q  88  191  104   16   91

 Core i7 #4    2800 D31067D  70  144   69   19   74
 Core i7 #2    2800 D31333D  84  155   67   21   87
 Core i5 #2    1600 D31333D 148  212  124   17  160

 i7 4820K $$ CPU at 3. 9   GHz, Turbo Boost, non-boost 3.7 GHz
 i7 860   #1 CPU at 3.466 GHz Turbo Boost, #2 based on non-boost 2.8 GHz
 i7 930   #3 CPU at 3.066 GHz Turbo Boost, #4 based on non-boost 2.8 GHz
 i5 2467M #1 CPU at 2.3   GHz Turbo Boost, #2 based on non-boost 1.6 GHz

 AMD K6X        500  PC100   13   31    8    3   13
 Duron          600  PC133   18   23   12    3   38
 Duron         1000  PC133   10   15    7    2   26
 Athlon         800  PC100   11   16    8    2   31
 Athlon TB      750  PC133   17   18    9    3   31
 Athlon TB     1000  PC133   11   14    7    2   26
 Athlon XP     1200 PC2100   13   18    9    4   23
 Athlon XP     1733 PC2100   13   19    9    5   19
 Athlon XP     2167 PC2700D  12   22   13    5   18
 Turion 64     1900 DD2320D  33   50   25    7   35
 Athlon 64     2000 PC3200D  34   43   25    3   37
 Athlon 64     2210 PC3200D  32   54   24    4   33
 Phenom II     3000 D31333D  44  113   74   14   58

 Cyrix MX       225     66        30   10    7     

 D = dual channel, Q = 4 channel, DD2 = DDR2 D3 = DDR3

 XX - slow nForce 570 chipset on some tests





Comparing CPUs of the same MHz and the same memory speed, P4s show
superiority performance of speed via data in RAM compared with AMD
with CPUs prior to Athlon 64. Core 2 Duo performance is outstanding
on some of these tests but poor on others, perhaps due to using the
nForce 570 chipset. Later results via Intel 965 chipset confirmed this
suspicion, giving rise to Core 2 Duo with DDR2 RAM taking the lead on performance at that time.

This i7 with DDR3 RAM pushes this processor into the lead with data in RAM. Core i7 #1/2 RAM is faster but see above comments for slow results for reading/writing.
The Phenom shows more significant improvements but MIPS/MHz is slower except for one test.

Back To Contents List

11. RAM Speed %MFLOPS/MHz — 32/64b SP/DP floating point


Examples — see paragraph 10 notes, but FP variations are less
than with integers.




 SSRD and SSRW are SSE3DNow normal SP Read and Read/Write 
 RSRD and RRRD are RandMem serial read and random read    
 FFSP and FFDP are from FFTGraf version 1 for largest FFTs
 FFS2 and FFD2 are from FFTGraf optimised version 2       

 CPU               MHz SSRD SSRW RSRD RRRD FFSP FFDP FFS2 FFD2

 80486              66    5    2    2  1. 0    3    3    4    3
 Pentium           100   10    4    4  1.6    6    6   12    9
 Pentium Pro       200   16    5    6  2.2    7    6   23   15
 Pentium MMX       200   14    5    5  1.3    7    6   13   11
 Celeron           300   19    5    4  2.2    8    6   22   12
 Pentium II        450   16    5    4  2.0    5    5   15   10
 Pentium III       450   16    5    4  2.0    5    5   15   10
 Pentium IIIEB     800   12    4    4  1.6    5    4   22   16
 Celeron M        1295   28    7    9  0.9    3    3   19   14
 Pentium M DCDDR  1862   33    9   11  2.8    6    5   26   21
 Pentium 4 RDRAM  2000   22    5    6  0.9    3    3   15   12
 Pentium 4 DDR    2533   17    3    5  0.4    2    2   10   10
 Pentium 4 DCDDR  3300   25    7    7  0.8                    
 Pentium 4E DCDDR 3000   27    9   10  0.9    4    3   13   12
 Atom M     DDR2d 1600   26    8   11  0.4    1    1   10   10
 Celeron C2M DDR2 2000   39   12   12  1. 8    4    4   27   23
 Core 2 DuoM DDR2 1830   57   16   17  2.6    7    7   31   28
 Core 2 Duo DDR2a 2400    8    3    5  1.2    3    3   26   17 XX
 Core 2 Duo DDR2a 2400   50   16   16  2.5    8    7   35   31
 Core 2 Duo DDR2c 2400   54   18   18  2.8   10    9   37   33
 Core i7 #3 DDR3b 3066   53   18   19  4.0   21   19   51   40
 Core i7 #1 DDR3a 3460   56   16   19  4.0   18   17   46   38
 Core i5 #1 DDR3b 2300   97   32   28  3.0   18   17   57   50
 Core i7 $$ QDR3e 3900   87   32   40  4.4   24   23   64   51

 Core i7 #4 DDR3b 2800   59   20   21  5.0   23   21   56   44
 Core i7 #2 DDR3a 2800   69   20   24  4.9   22   21   57   46
 Core i5 #2 DDR3b 1600  140   46   40  4.3   26   25   81   72

 i7 4820K $$ CPU at 3.9   GHz, Turbo Boost, non-boost 3.7 GHz
 i7 860   #1 CPU at 3.466 GHz Turbo Boost, #2 based on non-boost 2.8 GHz
 i7 930   #3 CPU at 3.066 GHz Turbo Boost, #4 based on non-boost 2. 8 GHz
 i5 2467M #1 CPU at 2.3   GHz Turbo Boost, #2 based on non-boost 1.6 GHz

 AMD K63           400    6    2    4  0.7    3    3          
 Duron             950    8    3    4  0.5    3    2   13    8
 Athlon            550              5  0.8                    
 Athlon TB        1000              4  0.5    2    2   13    8
 Athlon XP        2167   15    6    5  1.3    3    3   16   12
 Turion 64 DDR2a  1900   32   10   10  1.9    5    5   22   17
 Athlon 64        2000   32    9   11  1.2                    
 Athlon 64 DCDDR  2210   33   10   11  1.5    5    5   23   18
 Phenom II DDR3a  3000   36   15   25  3.9    9    6   34   19

 Cyrix MX          225              4  1.2                    

 XX - slow nForce 570 chipset on some tests
 DDR2a 533 MHz, DDR2c 800 MHz, DDR3a 1333 MHz, DDR3b 1067 MHz, 
 DDR2d 533 MHz 1 ch, QDR3e 1600 MHz 4 ch.





Superior floating point performance with AMD CPUs helped to overcome
inferior RAM speeds compared with Pentium 4. Except for those from nForce 570 chipset, Core 2 Duo scores came out best.
Core i7 provided further gains in relative speeds and Phenom improvements failed to close the gap in many cases.
Core i7 #1/2 RAM is faster but see above comments for slow results for reading/writing and with FFTs.
Back To Contents List

12. RAM Speed %MFLOPS/MHz — SSE SP, 3DNow SP, SSE2 DP FP


Examples — see 10. notes, but FP variations are less than with
integers.




 xxSP is either 32 bit SSE or 3DNow, xxDP is 64 bit SSE2
 RDxx is SSE3DNow Read and RWxx Read/Write
 FFxx is FFTGraf version 3 single and double precision

 CPU               MHz RDSP RDDP RWSP RWDP FFSP FFDP

 Pentium IIIE      800   26    -    8    -   23    -
 Celeron M        1295   28   14    8    4   22   13
 Pentium M DCDDR  1862   31   16    9    5   34   20
 Pentium 4 DDR    2533   18    9    4    2   12    9
 Pentium 4 RDRAM  2411   24   12    7    4   14   11
 Pentium 4 DCDDR  2533   22   11    6    3   15   11
 Pentium 4E DCDDR 3000   31   15   10    5   22   16
 Atom M     DDR2d 1600   45   18   14    7   16   10
 Celeron C2M DDR2 2000   39   19   11    6   35   25
 Core 2 DuoM DDR2 1830   60   30   17    8   43   31
 Core 2 Duo DDR2a 2400    7    4    3    2   32   20 XX
 Core 2 Duo DDR2a 2400   75   37   29   14   73   45
 Core 2 Duo DDR2c 2400   82   41   31   16   80   49
 Core i7 #1 DDR3a 3460   77   45   30   15   54   37
 Core i5 #1 DDR3a 2300  141   77   59   30   68   56
 Core i7 $$ QDR3e 3900  127   64   47   15   74   59

 Core i7 #2 DDR3a 2800   95   56   37   19   66   46
 Core i5 #2 DDR3a 1300  202  110   84   43   98   80

 i7 4820K $$ CPU at 3. 9   GHz, Turbo Boost, non-boost 3.7 GHz
 i7 860   #1 CPU at 3.466 GHz Turbo Boost, #2 based on non-boost 2.8 GHz
 i7 930   #3 CPU at 3.066 GHz Turbo Boost, #4 based on non-boost 2.8 GHz
 i5 2467M #1 CPU at 2.3   GHz Turbo Boost, #2 based on non-boost 1.6 GHz

 AMD K63           400    7    -    2    -         -
 Duron             950   15    -    5    -   13    -
 Athlon Tb        1200    9    -    4    -   12    -
 Athlon XP        2167   19    -    7    -   17    -
 Turion 64        1900   38   19   14    7   25   17
 Athlon 64        2000   34   17   10    5   25   16
 Athlon 64 DCDDR  2210   39   20   12    6   26   17
 Phenom II DDR3a  3000   54   27   20   10   37   21

 - Extensions N/A  XX - slow nForce 570 chipset on some tests
   DDR2a 533 MHz, DDR2c 800 MHz, DDR2d 533 MHz 1 channel
   QDR3e 1600 MHz 4 ch

These results could justify that a 2 GHz Athlon 64 is equivalent to
a 3 GHz P4 when running SIMD streaming instructions with data
in RAM. Yet again, with the nForce 570 chipset, Core 2 Duo results were very poor but other chipsets showed Core 2 as the best yet.
Again, The i7 produced further improvements as did the Phenom but the former rules the roost.
Note once more that Core i7 #1/2 RAM is faster, but see above comments for slow results for reading/writing and with FFTs.

END


Back To Contents List

To Start


More Historic Computer Speeds


Computer Speeds From Instruction Mixes pre-1960 to 1971

Whetstone Benchmark History and Results (1960’s to 1990’s, PCs to 2006)

Computer Speed Claims 1980 to 1996 — PCs and IBM Mainframes to 2004

Main Page Roy Longbottom’s PC Benchmark Collection

To Start
 



Produced by Roy Longbottom December 2004

Updated May 2014

Intel vs AMD Processor Comparison: Which is Better?

Intel and AMD have been the two primary processor companies for more than 50 years now. Although both use the x86 ISA to design their chips, over the last decade or so, their CPUs have taken completely different paths. In the mid-2000s, with the introduction of the Bulldozer chips, AMD started losing ground against Intel. A combination of low IPC and inefficient design almost drove the company into the ground. This continued for nearly a decade. The tables started turning in 2017 with the arrival of the Zen microarchitecture.

The new Ryzen processors marked a complete re-imagining of AMD’s approach to CPUs, with a focus on IPC, single-threaded performance, and, most notably, a shift to an MCM or modular chiplet design. Intel, meanwhile, continues to do things more or less exactly as they’ve done since the arrival of Sandy Bridge in 2011.

It all Started with Zen

First and second-gen Ryzen played spoiler to Intel’s midrange efforts by offering more cores and more threads than parts like the Core i5-7600K. But a combination of hardware-side issues like latency, and a lack of Ryzen-optimized games meant that Intel still commanded a significant performance lead in gaming workloads.

Things started to improve for AMD in the gaming section with the introduction of the Zen 2 based Ryzen 3000 CPUs, and Intel’s gaming crown was finally snatched with the release of the Zen 3 based Ryzen 5000 CPUs. A drastic improvement to IPC meant that AMD was able to offer more cores, but also match Intel in single-threaded workloads. Buying into Skylake refresh-refresh-refresh-refresh wouldn’t necessarily net you better framerates.

AMD and Intel have (or used to have) fundamentally different processor design philosophies. Here’s an annoying elementary school analogy that might help you understand the difference. Which one’s more fruit: A watermelon or a kilo of apples? One’s a really big fruit. And the other’s, well, a lot of small fruit. You’ll want to keep that in mind as we take a deep dive here in the next section.

Intel

Monolithic Processor Design vs AMD Ryzen Chiplets

Intel follows what’s called a monolithic approach to processor design. What this means, essentially, is that all cores, cache, and I/O resources for a given processor are physically on the same monolithic chip. There are some clear advantages to this approach. The most notable is reduced latency. Since everything is on the same physical substrate, different cores take much less time to communicate, access the cache, and access system memory. Latency is reduced. This leads to optimal performance.

Intel’s monolithic design

If everything else is the same, the monolithic approach will always net you the best performance. There’s a big drawback, though. This is in terms of cost and scaling. We need to take a quick look now at the economics of silicon yields. Strap in: things are going to get a little complicated.

Monolithic CPUs Offer Best Performance but are Expensive and…

When foundries manufacture CPUs, (or any piece of silicon for that matter) they almost never manage 100 percent yields. Yields refer to the proportion of usable parts made. If you’re on a mature process node like Intel’s 14nm+++, your silicon yields will be in excess of 70%. This means you get a lot of usable CPUs. The inverse, though, is that for every 10 CPUs you manufacture, you have to discard at least 2-3 defective units. The discarded unit obviously cost money to make, so that cost has to factor into the final selling price.

At low core counts, a monolithic approach works fine. This in large part explains why Intel’s mainstream consumer CPU line has, until recently, topped out at 4 cores. When you increase core count though, the monolithic approach results in exponentially greater costs. Why is this?

On a monolithic die, every core has to be functional. If you’re fabbing an eight-core chip and 7 out of 8 cores work, you still can’t use it. Remember what we said about yields being in excess of 70 percent? Mathematically, that ten percent defect rate stacks for every additional core on a monolithic die, to the point that with, say a 20-core Xeon, Intel actually has to throw away one or two defective chips for every usable one, since all 20 cores have to be functional. Costs don’t just scale linearly with core count–they scale exponentially because of wastage.

Furthermore, when expanding your 14nm capacity, the newly started factories won’t have the same level of processor yields as existing ones. This has already led to Intel’s processor shortages and the resulting F series CPUs.

  • Intel 14nm Processor Shortages Explained: How Ryzen Made it Worse

The consequence of all this is that Intel’s process is price and performance competitive at low core counts, but just not tenable at higher core counts unless they sell at thin margins or at a loss. It’s arguably cheaper for them to manufacture dual-core and quad-core processors than it is for AMD to ship Ryzen 3 SKUs. We’ll get to why that is now.

Chips, Chiplets and Dies

AMD adopts a chiplet-based or MCM (Multi-chip Module) approach to processor design. It makes sense to think of each Ryzen CPU as multiple discrete processors stuck together with superglue–Infinity Fabric in AMD parlance. One Ryzen CCX features a 4-core/8-core processor, together with its L3 cache. Two CCXs (single 8-core CCX with Zen 3) are stuck together on a CCD to create a chiplet, the fundamental building block of Zen-based Ryzen and Epyc CPUs. Up to 8 CCDs can be stacked on a single MCM (multi-chip module), allowing for up to 64 cores in consumer Ryzen processors such as the Threadripper 3990X.

There are two big advantages to this approach. For starters, costs scale more or less linearly with core counts. Because AMD’s wastage rate is relative to its being able to create a functional 4-core block at most (a single CCX), they don’t have to throw out massive stocks of defective CPUs. The second advantage comes from their ability to leverage those defective CPUs themselves. Whereas Intel just throws them out, AMD disables functional cores on a per-CCX basis to achieve different core counts.

For example, both the Ryzen 7 5800X and 5600X feature a single CCD with eight cores. The latter has two cores disabled, giving it 6 functional cores instead of eight. Naturally, this allows it to sell six-core parts at more competitive prices than Intel.

There is a big drawback to the chiplet approach: latency. Each chiplet is on a separate physical substrate. Because of the laws of physics, this means that Ryzen CPUs incur a latency penalty for communication over the Infinity Fabric. This was most noticeable with first-gen Ryzen. Infinity Fabric speeds correlated to memory clocks and overclocking your memory, therefore, resulted in noticeably faster CPU performance.

AMD managed to rectify this with the Ryzen 3000 CPUs and then further improve it with the newly launched Ryzen 5000 lineup. The former introduced a large L3 cache buffer, called “game cache”. L3 cache is the intermediary between system memory and low-level CPU core cache (L1 and L2). Typically, consumer processors have a small amount of L3–Intel’s i7 9700K, for instance, has just 12 MB of L3. AMD, however, paired the 3700X with 32 MB of L3 and the 3900X with a whopping 64 MB of L3.

The L3 cache is spread evenly between different cores. The increased amount of cache means that, with a bit of intelligent scheduling, cores can cache more of what they need. The buffer eliminates most of the latency penalty incurred over Infinity Fabric.

The Ryzen 5000 CPUs went a step ahead and eliminated the four core CCXs in favor of eight core complexes, with each core directly connected to every other on the CCX/CCD. This improves the inter-core latency, cache latency, and bandwidth as well as provides each core with twice as much L3 cache, significantly improving gaming performance:

  • AMD Ryzen 5000 “Zen 3” Architectural Deep Dive

Chiplet or Monolithic: Which is Better?

The chiplet approach going to see widespread adoption in the coming years, from both AMD as well as Intel, for CPUs as well as GPUs. This is because Moore’s law–which mandated a doubling in processing power, mainly as a result of die shrinks (56nm to 28nm> 28nm to 14nm>14nm to 7nm) every couple of years–has comprehensively slowed down. Intel has been stuck on the 14nm node for more than half a decade and even now, after 6-7 years, the succeeding 10nm node isn’t twice as faster (and denser) than its preceding 14nm process node.

The ironic thing is that Intel has already adopted the chiplet design for most of its future processors. The Ponte Vecchio Data Center GPU, Xe HP GPUs, and Meteor Lake are all going to leverage chiplets, with the only difference being with respect to the nomenclature. Intel calls them tiles:

  • Intel Believes its Tiles are a Better Approach to the MCM Design than AMD’s Chiplets

Video card comparison — Technical City

Top 5 video cards

NVIDIA GeForce RTX 3090 Ti
100.00

AMD Radeon RX 6950XT
96.21

NVIDIA GeForce RTX 3080 Ti
92.78

NVIDIA GeForce RTX 3090
90.49

NVIDIA GeForce RTX 3080 12GB
90. 45

To the performance rating of video cards →

Top 5 video cards for the best price-quality ratio (from $ 300)

NVIDIA GeForce GTX 1080 SLI Mobile
100.00

NVIDIA GeForce GTX 980 SLI Mobile
74.02

NVIDIA GeForce GTX 1070 (Mobile)
46.78

NVIDIA GeForce GTX 1650 Mobile
46.19

AMD Radeon RX 6750XT
46.03

To the rating of video cards for the best price-quality ratio (from $300) →


Top 5 video cards for the best price-quality ratio (up to $300)

NVIDIA A10G
100.00

NVIDIA Tesla P40
100.00

NVIDIA GeForce GTX 1080 Mobile
100.00

NVIDIA GeForce GTX 1070 SLI Mobile
95. 62

NVIDIA TITAN Xp
82.25

To the rating of video cards for the best price-quality ratio (up to $300) →

Top 5 video cards in mining

  • Bitcoin
  • Decred
  • Ethereum
  • Monero
  • Siacoin
  • ZCash

NVIDIA GeForce GTX 1080 Ti
1427 Mh/s

NVIDIA GeForce GTX 1080
1045 Mh/s

AMD Radeon R9 FURY X
858 Mh/s

NVIDIA GeForce GTX 1070
832 Mh/s

AMD Radeon Pro Duo
809 Mh/s

To the rating of video cards in Bitcoin mining →

NVIDIA GeForce GTX 1080 Ti
4.60 Gh/s

NVIDIA Tesla P100 SXM2
3.43 Gh/s

NVIDIA GeForce GTX 1080
3. 09 Gh/s

NVIDIA GeForce GTX 1070
2.83 Gh/s

NVIDIA GeForce GTX 980 Ti
2.40 Gh/s

To the rating of video cards in mining Decred →

NVIDIA TITAN V
79 Mh/s

NVIDIA Tesla P100 SXM2
69 Mh/s

AMD Radeon R9 295X2
62 Mh/s

AMD Radeon R9 390 X2
57 Mh/s

AMD Radeon R9 390X2
57 Mh/s

To the rating of video cards in Ethereum mining →

NVIDIA Tesla V100 PCIe
2.02kh/s

AMD Radeon RX Vega 64
1.90 kh/s

NVIDIA Tesla V100 SXM2
1.68kh/s

NVIDIA TITAN V
1.45 kh/s

NVIDIA Tesla P100 SXM2
1. 44kh/s

To the rating of video cards in Monero mining →

NVIDIA TITAN V
3.44 Gh/s

NVIDIA GeForce GTX 1080 Ti
2.96 Gh/s

NVIDIA GeForce GTX 1080
2.28 Gh/s

NVIDIA Tesla P100 SXM2
2.20 Gh/s

NVIDIA GeForce GTX 1070
1.75 Gh/s

To the rating of video cards in Siacoin mining →

NVIDIA TITAN V
884 Sol/s

NVIDIA GeForce GTX 1080 Ti
630 Sol/s

NVIDIA Tesla P100 SXM2
499 Sol/s

NVIDIA GeForce GTX 1080
470 Sol/s

NVIDIA GeForce GTX 980 Ti
461 Sol/s

ZCash Mining Video Card Rating →

Popular Comparisons

Here are some of the most popular video card comparisons of recent times.


GeForce RTX
3060 Ti

or


GeForce RTX
3060


GeForce GTX
1050 Ti

or


GeForce GTX
1650


GeForce RTX
2060

or


GeForce RTX
3050 8GB


GeForce GTX
1660 Super

or


GeForce RTX
3050 8GB


GeForce RTX
3060 Ti

or


GeForce RTX
3070


GeForce RTX
2060 Super

or


GeForce RTX
3060

Popular graphics cards

These graphics cards have been getting the most attention in the last few months.


GeForce GTX
1050 Ti


GeForce RTX
3090 Ti


Radeon RX
Vega 7


GeForce GTX
1650


GeForce RTX
3060 Processor VsRank points 1 AMD Ryzen 9 3900X 11980 2 AMD Ryzen Threadripper 2950X 11936 3 Intel Core i9-9900KS 11908 4 AMD Ryzen Threadripper 1950X 11868 5 AMD Ryzen Threadripper 2920X 11867 6 Intel Core i9-9900K 11858 7 Intel Core i9-10980XE 11815 8 Intel Core i9-7900X 11811 9 AMD Ryzen 7 2700X 11806 10 AMD Ryzen 7 3700X 11794

# Processor VsRank points
1 Intel Core i9-9900KS 11908
2 Intel Core i9-9900K 11858
3 Intel Core i9-10980XE 11815
4 Intel Core i9-7900X 11811
5 Intel Core i9-9980XE 11783
6 Intel Core i7-8086K 11728
7 Intel Xeon E-2176G 11707
8 Intel Core i7-8700K 11707
9 Intel Core i7-8700 11550
10 Intel Core i7-4960X 11524