1070Ti tdp: NVIDIA GeForce GTX 1070 Ti Specs

Nvidia GTX 1070 Ti: Power Consumption

Why you can trust Tom’s Hardware
Our expert reviewers spend hours testing and comparing products and services so you can choose the best for you. Find out more about how we test.

Power Consumption

GeForce GTX 1070 Ti FE’s power consumption lands where we’d expect, given its power target. That means it operates at the same level as the slightly larger GeForce GTX 1080 FE.

At stock settings, MSI’s GeForce GTX 1070 Ti Titanium 8G behaves in a similarly boring fashion, ending up just a tad above its 180W power target. The tiny sliver above this card’s TDP is almost certainly attributable to those 10cm fans and a somewhat more involved circuit layout.

  • MSI Z270 Gaming Pro Carbon (16GB) at Amazon for $98.97

What really makes a difference is a power target ceiling of 133% (compared to Nvidia’s default 120%). Using the highest possible overclock, MSI’s card maxes out at 233W, just under its 239W ceiling. At that point, voltage becomes the limiting factor. Not to spoil our overclocking findings, but it really doesn’t matter if you dial in a 100% fan speed and 2.1 GHz or the standard fan curve and 2050 MHz.

The 290W peak that we observed isn’t a problem in practice. Today’s PSUs employ secondary sides with low-impedance capacitors that can easily compensate for or smooth over brief spikes like these. Let this be a warning if you’re still using an old power supply, though: make sure it can handle modern graphics cards before upgrading.

Nvidia and, by extension, MSI have taken so much of the load off of the motherboard’s PCIe slot that it’s now pointless to look at each rail’s load to make sure it’s in-compliance. Needless to say, GeForce GTX 1070 Ti passes with flying colors.

Click on a graph to view a larger version:

Image 1 of 2

Image 1 of 2

Click on a graph to view a larger version:

Image 1 of 2

Image 1 of 2

Image 1 of 2

MORE: Best Graphics Cards

MORE: Desktop GPU Performance Hierarchy Table

MORE: All Graphics Content

MSI Z270 Gaming Pro Carbon: Price Comparison

254 Amazon customer reviews

☆☆☆☆☆

$18

View

Deal ends Sun, Dec 18

$98. 97

View

$133.98

View

$450

View

powered by

Current page:
Power Consumption

Prev Page The Witcher 3 (DirectX 11)

Next Page Temperature & Clock Rates

Nvidia GeForce GTX 1070 Ti Folding@Home Review

In an effort to make as much use of the colder months in New England as I can, I’m running tons of Stanford University’s Folding@Home on my computer to do charitable science for disease research while heating my house. In the last article, I reviewed a slightly older AMD card, the RX 480, to determine its performance and efficiency running Folding@Home. Today, I’ll be taking a look at one of the favorite cards from Nvidia for both folding and gaming: The 1070 Ti.

The GeForce GTX 1070 Ti was released in November 2017, and sits between the 1070 and 1080 in terms of raw performance. As of February 2019, the 1070 Ti can be for a deep discount on the used market, now that the RTX 20xx series cards have been released. I got my Asus version on eBay for $250.

Based on Nvidia’s 14nm Pascal architecture, the 1070 Ti has 2432 CUDA cores and 8 GB of GDDR5 memory, with a memory bandwidth of 256 GB/s. The base clock rate of the GPU is 1607 MHz, although the cards automatically boost well past the advertised boost clock of 1683 Mhz. Thermal Design Power (TDP) is 180 Watts.

The 3rd party Asus card I got is nothing special. It appears to be a dual-slot reference design, and uses a blower cooler to exhaust hot air out the back of the case. It requires one supplemental 8-pin PCI-E Power connection.

ASUS GeForce GTX 1070 Ti

One thing I will note about this card is it’s length. At 10.5 inches (which is similar to many NVidia high-end cards), it can be a bit problematic to fit in some cases. I have a Raidmax Sagitta mid-tower case from way back in 2006, and it fits, but barely. I had the same problem with the EVGA GeForce 1070 I reviewed earlier.

ASUS GTX 1070 Ti – Installed.

Test Environment

Testing was done in Windows 10 on my AMD FX-based system, which is old but holds pretty well, all things considered. You can read more on that here. The system was built for both performance and efficiency, using AMD’s 8320e processor (a bit less power hungry than the other 8-core FX processors), a Seasonic 650 80+ Gold Power Supply, and 8 GB of low voltage DDR3 memory. The real key here, since I take all my power measurements at the wall with a P3 Kill-A-Watt meter, is that the system is the same for all of my tests.

The Folding@Home Client version is 7.5.1, running a single GPU slot with the following settings:

GPU Slot Options for Maximum PPD

These settings tend to result in a slighter higher points per day (PPD), because they request large, advanced work units from Stanford.

Initial Test Results

Initial testing was done on one of the oldest drivers I could find to support the 1070 Ti (driver version 388.13). The thought here was that older drivers would have less gaming optimizations, which tend to hurt performance for compute jobs (unlike AMD, Nvidia doesn’t include a compute mode in their graphics driver settings).

Unfortunately, the best Nvidia driver for the non-Ti GTX 10xx cards (372.90) doesn’t work with the 1070 Ti, because the Ti version came out a few months later than the original cards. So, I was stuck with version 388.13.

Nvidia GTX 1070 Ti Monitoring – Baseline Clocks

I ran F@H for three days using the stock clock rate of 1823 MHz core, with the memory at 3802 MHz. Similar to what I found when testing the 1070, Folding@Home does not trigger the card to go into the high power (max performance) P0 state. Instead, it is stuck in the power-saving P2 state, so the core and memory clocks do not boost.

The PPD average for three days when folding at this rate was 632,380 PPD. Checking the Kill-A-Watt meter over the course of those days showed an approximate average system power consumption of 220 watts. Interestingly, this is less power draw than the GTX 1070 (which used 227 watts, although that was with overclocking + the more efficient 372.90 driver). The PPD average was also less than the GTX 1070, which had done about 640,000 PPD. Initial efficiency, in PPD/Watt, was thus 2875 (compared to the GTX 1070’s 2820 PPD/Watt).

The lower power consumption number and lower PPD performance score were a bit surprising, since the GTX 1070 TI has 512 more CUDA cores than the GTX 1070. However, in my previous review of the 1070, I had done a lot of optimization work, both with overclocking and with driver tuning. So, now it was time to do the same to the 1070 Ti.

Tuning the Card

By running UNIGINE’s Heaven video game benchmark in windowed mode, I was able to watch what the card did in MSI afterburner. The core clock boosted up to 1860 MHz (a modest increase from the 1823 base clock), and the memory went up to 4000 MHz (the default). I tried these overclocking settings and saw only a modest increase in PPD numbers. So, I decided to push it further, despite the Asus card having only a reference-style blower cooler. From my 1070 review, I found I was able to fold nice and stable with a core clock of 2012 MHz and a memory clock of 3802 MHz. So, I set up the GTX 1070 Ti with those same settings. After running it for five days, I pushed the core a little higher to 2050 Mhz. A few days later, I upgraded the driver to the latest (417.71).

Nvidia GTX 1070 Ti Monitoring – Overclocked

With these settings, I did have to increase the fan speed to keep the card below 70 degrees Celsius. Since the Asus card uses a blower cooler, it was a bit loud, but nothing too crazy. Open-air coolers with lots of heat pipes and multiple fans would probably let me push the card higher, but from what I’d read, people start running into stability problems at core clocks over 2100 Mhz. Since the goal of Folding@home is to produce reliable science to help Stanford University fight disease, I didn’t want to risk dropping a work unit due to an unstable overclock.

Here’s the production vs. time history from Stanford’s servers, courtesy of https://folding.extremeoverclocking.com/

Nvidia GTX1070 Ti Folding@Home Production Time History

As you can see below, the overclock helped improve the performance of the GTX 1070 Ti. Using the last five days worth of data points (which has the graphics driver set to 417.71 and the 2050 MHz core overclock), I got an average PPD of 703,371 PPD with a power consumption at the wall of 225 Watts. This gives an overall system efficiency of 3126 PPD/Watt.

Finally, these results are starting to make more sense. Now, this card is outpacing the GTX 1070 in terms of both PPD and energy efficiency. However, the gain in performance isn’t enough to confidently say the card is doing better, since there is typically a +/- 10% PPD difference depending on what work unit the computer receives. This is clear from the amount of variability, or “hash”, in the time history plot.

Interestingly, the GTX 1070 Ti it is still using about the same amount of power as the base model GTX 1070, which has a Thermal Design Power of 150 Watts, compared to the GTX 1070 Ti’s TDP of 180 Watts. So, why isn’t my system consuming 30 watts more at the wall than it did when equipped with the base 1070?

I suspect the issue here is that the drivers available for the 1070 Ti are not as good for folding as the 372.90 driver for the non-Ti 10-series Nvidia cards. As you can see from the MSI Afterburner screen shots above, GPU Usage on the GTX 1070 Ti during folding hovers in the 80-90% range, which is lower than the 85-93% range seen when using the non-Ti GTX 1070. In short, folding on the 1070 Ti seems to be a bit handicapped by the drivers available in Windows.

Comparison to Similar Cards

Here are the Production and Efficiency Plots for comparison to other cards I’ve tested.

GTX 1070 Ti Performance Comparison

GTX 1070 Ti Efficiency Comparison

Conclusion

The Nvidia GTX 1070 Ti is a very good graphics card for running Folding@Home. With an average PPD of 703K and a system efficiency of 3126 PPD/Watt, it is the fastest and most efficient graphics card I’ve tested so far. As far as maximizing the amount of science done per electricity consumed, this card continues the trend…higher-end video cards are more efficient, despite the increased power draw.

One side note about the GTX 1070 Ti is that the drivers don’t seem as optimized as they could be. This is a known problem for running Folding@Home in Windows. But, since the proven Nvidia driver 372.90 is not available for the Ti-flavor of the 1070, the hit here is more than normal. On the used market in 2019, you can get a GTX 1070 for $200 on ebay, whereas the GTX 1070 Ti’s go for $250. My opinion is that if you’re going to fold in Windows, a tuned GTX 1070 running the 372.90 driver is the way to go.

Future Work

To fully unlock the capability of the GTX 1070 Ti, I realized I’m going to have to switch operating systems. Stay tuned for a follow-up article in Linux.

Like this:

Like Loading…

This entry was posted in Computer Efficiency, GPUs, PPD/Watt and tagged 1070 PPD, 1070 Ti PPD, 1070ti ppd, Efficiency, Folding@home, Nvidia GTX 1070 Ti, Points Per Day, PPD. Bookmark the permalink.

GTX 1070 and 1070ti — How much does the ASUS GTX 1070 consume?

Geechi
Knowledgeable