Radeon 8500: ATI Radeon 8500 Specs | TechPowerUp GPU Database

Famous Graphics Chips: ATI’s Radeon 8500

The Radeon 8500 AIB launched by ATI in August 2001 used a 150 nm manufacturing process, for its R200 (codename, Chaplin) GPU. The AIB worked with the DirectX 8.1. and OpenGL 1.3 APIs.

The R200 introduced several new and enhanced features, but the most noteworthy was the ATI TruForm feature. TruForm was a Semiconductor Intellectual Property (SIP) block developed by ATI (now AMD) for hardware acceleration of tessellation. The following diagram is a simple example of a tessellation pipeline rendering a sphere from a crude cubic vertex set.

Figure 1: Tessellation can reduce or expand the number of triangles (polygons) in a 3D model (Image by Romainbehar for Wikipedia)

Tessellation can be relative according to the distance of an object to the view to adjust for level-of-detail. This allows objects close to the viewer (the camera) to have fine detail, while objects further away ones can have coarse meshes, yet seem comparable in quality. It also reduces the bandwidth required for a mesh by allowing them to be refined once inside the shader units.

Using N-Patches (also known as PN triangles) ATI’s TruForm, was a new higher order surface composed of curved rather than flat triangles. It permitted surfaces to be generated entirely within the graphics processor, without requiring significant changes to existing 3D artwork that was composed of flat triangles. That, postulated ATI, would make the technology accessible for developers to implement it and avoid breaking compatibility with older graphics processors, while providing an excellent visual experience. It was supported by DirectX 8s N-patches, which calculates how to use triangles to create a curved surface.

ATI’s R200 GPU was an average sized chip for the time, 120 mm² in size. It had 60 million transistors and features 4-pixel shaders and 2 vertex shaders, 8 texture mapping units, and 4 ROPs. ATI commented at the time that the R200 was more complex than a Pentium III processor.

The Radeon 8500 ran at 275 MHz and had 64 MB DDR using a 128-bit memory bus. It was a single-slot AIB and didn’t need an additional power connector, since it only drew 23 W. The AIB had a AGP 4x interface and offered three display outputs: DVI, VGA, and S-Video.

Figure 2: ATI Radeon 8500 (Source Tech Power up)

The R200 was ATI’s second-generation GPU to carry the Radeon brand. As most AIBs of the time, the 8500 also included 2D GUI acceleration for Widows and offered video acceleration with a built in MPEG CODEC.

Whereas the R100 had two rendering pipelines, the R200 featured four which ATI branded as Pixel Tapestry II. That increased the AIBs fill rate to 1 Gigapixel/s.

ATI built the original Radeon with three texture units per pipeline so it could apply three textures to a pixel in a single clock cycle. However, game developers chose not to support that feature. So, instead of wasting transistors, ATI reduced the R200 to two texture units per pipeline. That matched the Nvidia GeForce3 and made the developers happy.

But ATI was clever and enabled Pixel Tapestry II.to apply six textures in a single pass. Legendary game developer John Carmack was working on the upcoming Doom 3 commented at the time, “The standard lighting model in DOOM, with all features enabled, but no custom shaders, takes five passes on a GF1/2 or 2 Radeon.” He said that same lighting model would take “either two or three passes on a GF3, and should be possible in a clear + single pass on ATI’s new part.” [1]

With the original Radeon, ATI introduced the Charisma hardware transform and lighting engine. The R200’s Charisma Engine II was the company’s second-generation hardware accelerated, fixed function transform & lighting engine and benefits from the R200’s increased clock speed.

ATI redid the vertex shader in the R200 and branded it the Smartshader engine. Smartshader is a programmable vertex shader, and was identical to Nvidia’s GeForce3 vertex shader, as both companies conformed to the DirectX 8. 1 specifications.

In late 2000, just before the roll out of the Radeon 8500/R200, ATI introduced their HyperZ technology. Basically, a Z-compression scheme. ATI claimed HyperZ, could offer 1.5 gigatexels per second fill rate performance, even though the R200’s theoretical rate was 1.2 gigatexels. In testing, the HyperZ did indeed provide a performance improvement

ATI’s HyperZ technology consisted of three features working in conjunction with one another to provide an “increase” in memory bandwidth.

 

Figure 3: ATI’s HyperZ (Image by Shmuel Csaba Otto Traian for Wikipedia)

ATI’s HyperZ borrowed some concepts from the deferred rendering process developed by Imagination Technologies for their PowerVR tiling engine.

Quite a bit of memory bandwidth can be used to repeatedly access the Z-buffer to determine which, if any, pixels might be in front of the one being rendered. The first step in the HyperZ process was to check the z-buffer before a pixel was sent to the rendering pipeline. That provided a culling of unneeded pixels to be abandoned before the R200 rendered them.

Then the z data was passed through a lossless compression process to compresses the data in the Z-buffer. That also reduced the memory space needed for the z-data, and conserved data transfer bandwidth accessing the Z-buffer.

When the Z-data was used, a Fast Z-Clear process emptied the Z-buffer after the image had been rendered. ATI had a particularly efficient Z-buffer clearing process at the time.

The first Radeon employed 8×8 blocks. To decrease the bandwidth needed, ATI reduced the blocks size to 4×4. The R200 could discard 64 pixels per clock instead of 8 by the original Radeon. (The GeForce3 could discard 16 pixels per clock.)

ATI also implemented an improved Z-Compression algorithm that, according to their spec sheets, gave them a 20% increase in Z-Compression performance.

Jim Blinn introduced the concept of bump mapping in 1978.[2] It created artificial depth normal based on the illumination of the surface of an object. However, game developers didn’t start using bump mapping till early 2000; Halo 1 was one of the first games to use it in 1998.

Want more tech news? Subscribe to ComputingEdge Newsletter today!

Putting it all together

Prior to the adoption of bump mapping, normal and parallax mapping to simulate higher mesh detail, 3D shapes required large quantities of triangles. The more triangles are used, the more realistic surfaces appeared.

To alleviate the burden of huge numbers of triangles, tessellation was employed. TruForm tessellated 3D surfaces using the existing triangles and added triangles to them to add detail to a polygonal model. The result is it increases image quality without significantly impacting frame rates.

However, TruForm wasn’t used much by game developers because it required the models to work outside of DirectX 8.1. Because of the lack of industry-support for the technology most developers ignored it. Also, in 2000 Nvidia had eclipsed ATI for market share of AIBs, and developers weren’t as willing to make the investment in supporting a unique feature on the number two supplier. By the time ATI, now part of AMD got to the Radeon X1000 series in 2007, TruForm was no longer a hardware feature.

With the Radeon 9500 and hardware supporting Shader Model 3.0 from Microsoft, the render to vertex buffer feature in it could be used for tessellation applications. Tessellation in dedicated hardware returned in the ATI’s Xenos GPU for the Xbox and Radeon R600 GPUs.

Support for hardware tessellation only became mandatory in Direct3D 11 and OpenGL 4. Tessellation as defined in those APIs is only supported by newer TeraScale 2 (VLIW5) products introduced by AMD in September 2009 and GCN-based products (available from January 2012 on). In AMD’s GCN (graphics core next) the tessellation operation is part of the geometric processor.

When the Radeon 8500 came out, ATI was going through a difficult management shakeup in the software group and the drivers the company issued were buggy. To make matters worse the company cheated on some benchmarks and reported higher scores than were attainable by reviewers. ATI also had problems with its Smoothvision antialiasing.[3]

TruForm, the feature that should have propelled ATI to a leadership position was lost due to mismanagement, and poor marketing. The technology leadership ATI had demonstrated through its development was wasted.

[1] Goldstein, Maarten, Carmack On NVidia & ATI, ShackNews (August 1, 2001), https://www.shacknews.com/article/15230/carmack-on-nvidia-ati

[2] Blinn, James F. Simulation of Wrinkled Surfaces, Computer Graphics, Vol. 12 (3), pp. 286-292 SIGGRAPH-ACM (August 1978)

[3] Shimpi, Anand Lal,  ATI’s Radeon 8500 – New drivers expose potential, (November 14, 2001), https://www.anandtech.com/show/850

Jon Peddie, is a recognized pioneer in the graphics industry, president of Jon Peddie Research and named one of the most influential analysts in the world. He lectures at numerous conferences and universities on topics pertaining to graphics technology and the emerging trends in digital media technology. Former president of Siggraph Pioneers, he serves on advisory boards of several conferences, organizations, and companies, and contributes articles to numerous publications. In 2015, he was given the Life Time Achievement award from the CAAD society. Peddie has published hundreds of papers, to date; and authored and contributed to 11 books, His most recent, Ray Tracing: A tool for all.

ATI’s Radeon 8500: First GPU With Hardware Tessellation

This article is part of the Electronics History series: The Graphics Chip Chronicles.

The Radeon 8500 AIB launched by ATI in August 2001 used a 150-nm manufacturing process, for its R200 GPU, code-named «Chaplin». The AIB worked with DirectX 8.1. and OpenGL 1.3 APIs. 

The R200 introduced several new and enhanced features, but the most noteworthy was ATI’s «TruForm» feature. TruForm was a semiconductor intellectual property (IP) block developed by ATI (now AMD) for accelerating tessellation in hardware. The following diagram is a simple example of a tessellation pipeline rendering a sphere from a crude cubic vertex set.

Tessellation can be relative according to the distance of an object to the view in order to adjust for level-of-detail. This allows objects close to the viewer (the camera) to have fine detail, while objects further away can have coarse meshes, and yet at the same time seem comparable in quality. It also reduces the bandwidth required for a mesh by allowing it to be refined once inside the shader units.

ATI’s TruForm creates a new type of surface composed of curved rather than flat triangles, called N-Patches or PN triangles. The new approach permitted surfaces to be generated entirely within the graphics processor, without requiring significant changes to existing 3D artwork composed of flat triangles. That, according to ATI, would make the technology more accessible for developers and allow it to avoid breaking compatibility with older graphics processors—while at the same time offering high-quality visuals. The technology was supported by DirectX 8s N-patches, which calculates how to use triangles to create a curved surface.

ATI’s R200 GPU was an average-sized chip for the time: 120 mm² in area. It incorporated 60 million transistors and featured four pixel shaders and two vertex shaders, eight texture mapping units, and four ROPs. ATI said at the time that the R200 was more complex than Intel’s Pentium III processors.

The Radeon 8500 ran at 275 MHz and was supplemented with 64 MB DDR using a 128-bit memory bus. It was a single-slot AIB and didn’t need an additional power connector, since it only consumed 23 W. The AIB had an AGP 4x interface and offered three display outputs: DVI, VGA, and S-Video.

The R200 was ATI’s second-generation GPU to carry the Radeon brand. As most AIBs of the time, the 8500 also included 2D GUI acceleration for Windows and offered video acceleration with a built-in MPEG CODEC.

Whereas the R100 had two rendering pipelines, the R200 featured four. ATI branded the larger processing pipeline as Pixel Tapestry II. The new design increased the AIB’s fill rate to 1 Gigapixel/s.

ATI built the original Radeon chip with three texture units per pipeline so it could apply three textures to a pixel in a single clock cycle. However, game developers chose not to support that feature. Instead of wasting transistors on an unsupported feature, ATI decided to build the R200 with only two texture units per pipeline. That matched the Nvidia GeForce3 and made developers happy.

But ATI was clever and enabled Pixel Tapestry II to apply six textures in a single pass. Legendary game developer John Carmack, who was working on the upcoming Doom 3, said at the time, «The standard lighting model in Doom, with all features enabled, but no custom shaders, takes five passes on a GF1/2 or 2 Radeon.» He said that the same lighting model would take «either two or three passes on a GF3, and should be possible in a clear + single pass on ATI’s new part. «

With the original Radeon, ATI introduced its «Charisma» hardware transform and lighting engine. The R200’s Charisma Engine II was the company’s second-generation hardware accelerated, fixed-function transform and lighting engine, and it benefitted from the R200’s increased clock speed.

ATI overhauled the vertex shader in the R200 and branded it the «Smartshader» engine. Smartshader is a programmable vertex shader, and was identical to Nvidia’s GeForce3 vertex shader, as both companies conformed to the DirectX 8.1 specifications.

In late 2000, just before the rollout of the Radeon 8500/R200, ATI also introduced its «HyperZ» technology, which was basically a Z-compression scheme. ATI boasted that HyperZ could offer a 1.5 gigatexels per second fill rate, even though the R200’s theoretical maximum was only 1.2 gigatexels. In fact, the HyperZ did provide a performance improvement during testing.

ATI’s HyperZ technology consisted of three features working in conjunction with one another to provide an «increase» in memory bandwidth.

ATI’s HyperZ piggybacked on several concepts from the deferred rendering process developed by Imagination Technologies for its PowerVR tiling engine.

A large amount of memory bandwidth is required to repeatedly access the Z-buffer to determine what pixels, if any, are in front of the one being rendered. The first step in the HyperZ process was to check the z-buffer before a pixel was sent to the rendering pipeline. This approach removed unneeded pixels before the R200 rendered them.

Then the Z-data was passed through a lossless compression process to compress the data in the Z-buffer. That also reduced the memory space needed for the S-data, and conserved data transfer bandwidth while accessing the Z-buffer.

When the Z-data was used, a Fast Z-Clear process emptied the Z-buffer after the image had been rendered. ATI had a particularly efficient Z-buffer clearing process at the time.

The first Radeon employed 8×8 blocks. To decrease the bandwidth needed, ATI adjusted the block size to 4×4. The R200 could discard 64 pixels per clock instead of eight. (The GeForce3 could discard 16 pixels per clock.)

ATI also implemented an improved Z-Compression algorithm that, according to the datasheet, gave them a 20% boost in Z-Compression performance.

Jim Blinn introduced the concept of bump mapping in 1978. The approach created artificial depth by using illumination on the surface of an object. However, most game developers didn’t start using bump mapping until early 2000; Halo 1 was one of the first games to use it in 1998. 

Putting It All Together

Prior to the adoption of bump, normal, and parallax mapping to simulate higher mesh detail, 3D shapes required large quantities of triangles. The more triangles used, the more realistic surfaces you could create.

To reduce the number of triangles in use, tessellation was employed. TruForm tessellated 3D surfaces using the existing triangles and tacked on additional triangles to them to add detail to a polygonal model. The result was that the TruForm technology improved image quality without significantly impacting frame rates.

However, TruForm was seldom used by game developers because it required models to work outside of DirectX 8.1. Without widespread industry support, most developers simply ignored it. On top of that, in 2000 Nvidia had eclipsed ATI in AIB market share, and developers were not as willing to invest in a unique feature from the No.2 supplier. By the time ATI, now part of AMD, upgraded to the Radeon X1000 series in 2007, TruForm was no longer a hardware feature.

With the Radeon 9500, the render-to-vertex buffer feature in it could be used for tessellation applications. This was also helped along by hardware supporting Shader Model 3.0 from Microsoft. Tessellation in dedicated hardware returned in the ATI’s Xenos GPU for the Xbox and Radeon R600 GPUs.

Support for hardware tessellation only became mandatory in Direct3D 11 and OpenGL 4. Tessellation, as defined in those APIs, is only supported by newer TeraScale 2 (VLIW5) products introduced by AMD in 2009 and GCN-based products (available from January 2012). In AMD’s GCN (graphics core next), the tessellation operation is part of the geometric processor. 

When the Radeon 8500 came out, ATI’s software group was going through a difficult management shakeup and the drivers the company issued were buggy. To make matters worse the company cheated on some benchmarks and reported higher scores than were attainable by reviewers. ATI also had problems with its Smoothvision antialiasing. 

TruForm, the feature that should have propelled ATI to a leadership position, was lost due to mismanagement and lackluster marketing. The technology leadership ATI had built up through its development was wasted. 

Read more articles in the Electronics History series: The Graphics Chip Chronicles.

Characteristics of the video card ATI Radeon 8500 / Overclockers.ua

  • News
  • Specifications
  • Reviews
  • Processors
  • Motherboards
  • Memory
  • Video cards
  • Cooling systems
  • Enclosures
  • Power supplies
  • Accumulators
  • Peripherals
  • Systems
  • nineFury XRadeon R9 FuryRadeon R9 NanoRadeon R9 390XRadeon R9 390Radeon R9 380XRadeon R9 380Radeon R7 370Radeon R7 360Radeon R9 295X2Radeon R9 290XRadeon R9 290Radeon R9 280XRadeon R9 285Radeon R9 280Radeon R9 270XRadeon R9 270Radeon R7 265Radeon R7 260XRadeon R7 260Radeon R7 250Radeon R7 240Radeon HD 7970Radeon HD 7950Radeon HD 7870 XTRadeon HD 7870Radeon HD 7850Radeon HD 7790Radeon HD 7770Radeon HD 7750Radeon HD 6990Radeon HD 6970Radeon HD 6950Radeon HD 6930Radeon HD 6870Radeon HD 6850Radeon HD 6790Radeon HD 6770Radeon HD 6750Radeon HD 6670 GDDR5Radeon HD 6670 GDDR3Radeon HD 6570 GDDR5Radeon HD 6570 GDDR3Radeon HD 6450 GDDR5Radeon HD 6450 GDDR3Radeon HD 5570 GDDR5Radeon HD 3750Radeon HD 3730Radeon HD 5970Radeon HD 5870Radeon HD 5850Radeon HD 5830Radeon HD 5770Radeon HD 5750Radeon HD 5670Radeon HD 5570Radeon HD 5550Radeon HD 5450Radeon HD 4890Radeon HD 4870 X2Radeon HD 4870Radeon HD 4860Radeon HD 4850 X2Radeon HD 4850Radeon HD 4830Radeon HD 4790Radeon HD 4770Radeon HD 4730Radeon HD 4670Radeon HD 4650Radeon HD 4550Radeon HD 4350Radeon HD 4350Radeon HD 43500 (IGP 890GX) Radeon HD 4200 (IGP)Radeon HD 3870 X2Radeon HD 3870Radeon HD 3850Radeon HD 3690Radeon HD 3650Radeon HD 3470Radeon HD 3450Radeon HD 3300 (IGP)Radeon HD 3200 (IGP)Radeon HD 3100 (IGP)Radeon HD 2900 XT 1Gb GDDR4Radeon HD 2900 XTRadeon HD 2900 PRORadeon HD 2900 GTRadeon HD 2600 XT DUALRadeon HD 2600 XT GDDR4Radeon HD 2600 XTRadeon HD 2600 PRORadeon HD 2400 XTRadeon HD 2400 PRORadeon HD 2350Radeon X1950 CrossFire EditionRadeon X1950 XTXRadeon X1950 XTRadeon X1950 PRO DUALRadeon X1950 PRORadeon X1950 GTRadeon X1900 CrossFire EditionRadeon X1900 XTXRadeon X1900 XTRadeon X1900 GT Rev2Radeon X1900 GTRadeon X1800 CrossFire EditionRadeon X1800 XT PE 512MBRadeon X1800 XTRadeon X1800 XLRadeon X1800 GTORadeon X1650 XTRadeon X1650 GTRadeon X1650 XL DDR3Radeon X1650 XL DDR2Radeon X1650 PRO on RV530XTRadeon X1650 PRO on RV535XTRadeon X1650Radeon X1600 XTRadeon X1600 PRORadeon X1550 PRORadeon X1550Radeon X1550 LERadeon X1300 XT on RV530ProRadeon X1300 XT on RV535ProRadeon X1300 CERadeon X1300 ProRadeon X1300Radeon X1300 LERadeon X1300 HMRadeon X1050Radeon X850 XT Platinum EditionRadeon X850 XT CrossFire EditionRadeon X850 XT Radeon X850 Pro Radeon X800 XT Platinum EditionRadeon X800 XTRadeon X800 CrossFire EditionRadeon X800 XLRadeon X800 GTO 256MBRadeon X800 GTO 128MBRadeon X800 GTO2 256MBRadeon X800Radeon X800 ProRadeon X800 GT 256MBRadeon X800 GT 128MBRadeon X800 SERadeon X700 XTRadeon X700 ProRadeon X700Radeon X600 XTRadeon X600 ProRadeon X550 XTRadeon X550Radeon X300 SE 128MB HM-256MBR adeon X300 SE 32MB HM-128MBRadeon X300Radeon X300 SERadeon 9800 XTRadeon 9800 PRO /DDR IIRadeon 9800 PRO /DDRRadeon 9800Radeon 9800 SE-256 bitRadeon 9800 SE-128 bitRadeon 9700 PRORadeon 9700Radeon 9600 XTRadeon 9600 PRORadeon 9600Radeon 9600 SERadeon 9600 TXRadeon 9550 XTRadeon 9550Radeon 9550 SERadeon 9500 PRORadeon 9500 /128 MBRadeon 9500 /64 MBRadeon 9250Radeon 9200 PRORadeon 9200Radeon 9200 SERadeon 9000 PRORadeon 9000Radeon 9000 XTRadeon 8500 LE / 9100Radeon 8500Radeon 7500Radeon 7200 Radeon LE Radeon DDR OEM Radeon DDR Radeon SDR Radeon VE / 7000Rage 128 GL Rage 128 VR Rage 128 PRO AFRRage 128 PRORage 1283D Rage ProIntelArc A770 16GBArc A770 8GBArc A750Arc A380Arc A310NVIDIAGeForce RTX 4090GeForce RTX 4080GeForce RTX 4080 12GBGeForce RTX 3090 TiGeForce RTX 3090GeForce RTX 3080 TiGeForce RTX 3080 12GBGeForce RTX 3080GeForce RTX 3070 TiGeForce RTX 3070GeForce RTX 3060 TiGeForce RTX 3060 rev. 2GeForce RTX 3060GeForce RTX 3050GeForce RTX 2080 TiGeForce RTX 2080 SuperGeForce RTX 2080GeForce RTX 2070 SuperGeForce RTX 2070GeForce RTX 2060 SuperGeForce RTX 2060GeForce GTX 1660 TiGeForce GTX 1660 SuperGeForce GTX 1660GeForce GTX 1650 SuperGeForce GTX 1650 GDDR6GeForce GTX 1650 rev.3GeForce GTX 1650 rev.2GeForce GTX 1650GeForce GTX 1630GeForce GTX 1080 TiGeForce GTX 1080GeForce GTX 1070 TiGeForce GTX 1070GeForce GTX 1060GeForce GTX 1060 3GBGeForce GTX 1050 TiGeForce GTX 1050 3GBGeForce GTX 1050GeForce GT 1030GeForce GTX Titan XGeForce GTX 980 TiGeForce GTX 980GeForce GTX 970GeForce GTX 960GeForce GTX 950GeForce GTX TitanGeForce GTX 780 TiGeForce GTX 780GeForce GTX 770GeForce GTX 760GeForce GTX 750 TiGeForce GTX 750GeForce GT 740GeForce GT 730GeForce GTX 690GeForce GTX 680GeForce GTX 670GeForce GTX 660 TiGeForce GTX 660GeForce GTX 650 Ti BoostGeForce GTX 650 TiGeForce GTX 650GeForce GT 640 rev.2GeForce GT 640GeForce GT 630 rev.2GeForce GT 630GeForce GTX 590GeForce GTX 580GeForce GTX 570GeForce GTX 560 TiGeForce GTX 560GeForce GTX 550 TiGeForce GT 520GeForce GTX 480GeForce GTX 470GeForce GTX 465GeForce GTX 460 SEGeForce GTX 460 1024MBGeForce GTX 460 768MBGeForce GTS 450GeForce GT 440 GDDR5GeForce GT 440 GDDR3GeForce GT 430GeForce GT 420GeForce GTX 295GeForce GTX 285GeForce GTX 280GeForce GTX 275GeForce GTX 260 rev. 2GeForce GTX 260GeForce GTS 250GeForce GTS 240GeForce GT 240GeForce GT 230GeForce GT 220GeForce 210Geforce 205GeForce GTS 150GeForce GT 130GeForce GT 120GeForce G100GeForce 9800 GTX+GeForce 9800 GTXGeForce 9800 GTSGeForce 9800 GTGeForce 9800 GX2GeForce 9600 GTGeForce 9600 GSO (G94)GeForce 9600 GSOGeForce 9500 GTGeForce 9500 GSGeForce 9400 GTGeForce 9400GeForce 9300GeForce 8800 ULTRAGeForce 8800 GTXGeForce 8800 GTS Rev2GeForce 8800 GTSGeForce 8800 GTGeForce 8800 GS 768MBGeForce 8800 GS 384MBGeForce 8600 GTSGeForce 8600 GTGeForce 8600 GSGeForce 8500 GT DDR3GeForce 8500 GT DDR2GeForce 8400 GSGeForce 8300GeForce 8200GeForce 8100GeForce 7950 GX2GeForce 7950 GTGeForce 7900 GTXGeForce 7900 GTOGeForce 7900 GTGeForce 7900 GSGeForce 7800 GTX 512MBGeForce 7800 GTXGeForce 7800 GTGeForce 7800 GS AGPGeForce 7800 GSGeForce 7600 GT Rev.2GeForce 7600 GTGeForce 7600 GS 256MBGeForce 7600 GS 512MBGeForce 7300 GT Ver2GeForce 7300 GTGeForce 7300 GSGeForce 7300 LEGeForce 7300 SEGeForce 7200 GSGeForce 7100 GS TC 128 (512)GeForce 6800 Ultra 512MBGeForce 6800 UltraGeForce 6800 GT 256MBGeForce 6800 GT 128MBGeForce 6800 GTOGeForce 6800 256MB PCI-EGeForce 6800 128MB PCI-EGeForce 6800 LE PCI-EGeForce 6800 256MB AGPGeForce 6800 128MB AGPGeForce 6800 LE AGPGeForce 6800 GS AGPGeForce 6800 GS PCI-EGeForce 6800 XTGeForce 6600 GT PCI-EGeForce 6600 GT AGPGeForce 6600 DDR2GeForce 6600 PCI-EGeForce 6600 AGPGeForce 6600 LEGeForce 6200 NV43VGeForce 6200GeForce 6200 NV43AGeForce 6500GeForce 6200 TC 64(256)GeForce 6200 TC 32(128)GeForce 6200 TC 16(128)GeForce PCX5950GeForce PCX 5900GeForce PCX 5750GeForce PCX 5550GeForce PCX 5300GeForce PCX 4300GeForce FX 5950 UltraGeForce FX 5900 UltraGeForce FX 5900GeForce FX 5900 ZTGeForce FX 5900 XTGeForce FX 5800 UltraGeForce FX 5800GeForce FX 5700 Ultra /DDR-3GeForce FX 5700 Ultra /DDR-2GeForce FX 5700GeForce FX 5700 LEGeForce FX 5600 Ultra (rev. 2)GeForce FX 5600 Ultra (rev.1)GeForce FX 5600 XTGeForce FX 5600GeForce FX 5500GeForce FX 5200 UltraGeForce FX 5200GeForce FX 5200 SEGeForce 4 Ti 4800GeForce 4 Ti 4800-SEGeForce 4 Ti 4200-8xGeForce 4 Ti 4600GeForce 4 Ti 4400GeForce 4 Ti 4200GeForce 4 MX 4000GeForce 4 MX 440-8x / 480GeForce 4 MX 460GeForce 4 MX 440GeForce 4 MX 440-SEGeForce 4 MX 420GeForce 3 Ti500GeForce 3 Ti200GeForce 3GeForce 2 Ti VXGeForce 2 TitaniumGeForce 2 UltraGeForce 2 PROGeForce 2 GTSGeForce 2 MX 400GeForce 2 MX 200GeForce 2 MXGeForce 256 DDRGeForce 256Riva TNT 2 UltraRiva TNT 2 PRORiva TNT 2Riva TNT 2 M64Riva TNT 2 Vanta LTRiva TNT 2 VantaRiva TNTRiva 128 ZXRiva 128 9Fury XRadeon R9 FuryRadeon R9 NanoRadeon R9 390XRadeon R9 390Radeon R9 380XRadeon R9 380Radeon R7 370Radeon R7 360Radeon R9 295X2Radeon R9 290XRadeon R9 290Radeon R9 280XRadeon R9 285Radeon R9 280Radeon R9 270XRadeon R9 270Radeon R7 265Radeon R7 260XRadeon R7 260Radeon R7 250Radeon R7 240Radeon HD 7970Radeon HD 7950Radeon HD 7870 XTRadeon HD 7870Radeon HD 7850Radeon HD 7790Radeon HD 7770Radeon HD 7750Radeon HD 6990Radeon HD 6970Radeon HD 6950Radeon HD 6930Radeon HD 6870Radeon HD 6850Radeon HD 6790Radeon HD 6770Radeon HD 6750Radeon HD 6670 GDDR5Radeon HD 6670 GDDR3Radeon HD 6570 GDDR5Radeon HD 6570 GDDR3Radeon HD 6450 GDDR5Radeon HD 6450 GDDR3Radeon HD 5570 GDDR5Radeon HD 3750Radeon HD 3730Radeon HD 5970Radeon HD 5870Radeon HD 5850Radeon HD 5830Radeon HD 5770Radeon HD 5750Radeon HD 5670Radeon HD 5570Radeon HD 5550Radeon HD 5450Radeon HD 4890Radeon HD 4870 X2Radeon HD 4870Radeon HD 4860Radeon HD 4850 X2Radeon HD 4850Radeon HD 4830Radeon HD 4790Radeon HD 4770Radeon HD 4730Radeon HD 4670Radeon HD 4650Radeon HD 4550Radeon HD 4350Radeon HD 4350Radeon HD 43500 (IGP 890GX) Radeon HD 4200 (IGP)Radeon HD 3870 X2Radeon HD 3870Radeon HD 3850Radeon HD 3690Radeon HD 3650Radeon HD 3470Radeon HD 3450Radeon HD 3300 (IGP)Radeon HD 3200 (IGP)Radeon HD 3100 (IGP)Radeon HD 2900 XT 1Gb GDDR4Radeon HD 2900 XTRadeon HD 2900 PRORadeon HD 2900 GTRadeon HD 2600 XT DUALRadeon HD 2600 XT GDDR4Radeon HD 2600 XTRadeon HD 2600 PRORadeon HD 2400 XTRadeon HD 2400 PRORadeon HD 2350Radeon X1950 CrossFire EditionRadeon X1950 XTXRadeon X1950 XTRadeon X1950 PRO DUALRadeon X1950 PRORadeon X1950 GTRadeon X1900 CrossFire EditionRadeon X1900 XTXRadeon X1900 XTRadeon X1900 GT Rev2Radeon X1900 GTRadeon X1800 CrossFire EditionRadeon X1800 XT PE 512MBRadeon X1800 XTRadeon X1800 XLRadeon X1800 GTORadeon X1650 XTRadeon X1650 GTRadeon X1650 XL DDR3Radeon X1650 XL DDR2Radeon X1650 PRO on RV530XTRadeon X1650 PRO on RV535XTRadeon X1650Radeon X1600 XTRadeon X1600 PRORadeon X1550 PRORadeon X1550Radeon X1550 LERadeon X1300 XT on RV530ProRadeon X1300 XT on RV535ProRadeon X1300 CERadeon X1300 ProRadeon X1300Radeon X1300 LERadeon X1300 HMRadeon X1050Radeon X850 XT Platinum EditionRadeon X850 XT CrossFire EditionRadeon X850 XT Radeon X850 Pro Radeon X800 XT Platinum EditionRadeon X800 XTRadeon X800 CrossFire EditionRadeon X800 XLRadeon X800 GTO 256MBRadeon X800 GTO 128MBRadeon X800 GTO2 256MBRadeon X800Radeon X800 ProRadeon X800 GT 256MBRadeon X800 GT 128MBRadeon X800 SERadeon X700 XTRadeon X700 ProRadeon X700Radeon X600 XTRadeon X600 ProRadeon X550 XTRadeon X550Radeon X300 SE 128MB HM-256MBR adeon X300 SE 32MB HM-128MBRadeon X300Radeon X300 SERadeon 9800 XTRadeon 9800 PRO /DDR IIRadeon 9800 PRO /DDRRadeon 9800Radeon 9800 SE-256 bitRadeon 9800 SE-128 bitRadeon 9700 PRORadeon 9700Radeon 9600 XTRadeon 9600 PRORadeon 9600Radeon 9600 SERadeon 9600 TXRadeon 9550 XTRadeon 9550Radeon 9550 SERadeon 9500 PRORadeon 9500 /128 MBRadeon 9500 /64 MBRadeon 9250Radeon 9200 PRORadeon 9200Radeon 9200 SERadeon 9000 PRORadeon 9000Radeon 9000 XTRadeon 8500 LE / 9100Radeon 8500Radeon 7500Radeon 7200 Radeon LE Radeon DDR OEM Radeon DDR Radeon SDR Radeon VE / 7000Rage 128 GL Rage 128 VR Rage 128 PRO AFRRage 128 PRORage 1283D Rage ProIntelArc A770 16GBArc A770 8GBArc A750Arc A380Arc A310NVIDIAGeForce RTX 4090GeForce RTX 4080GeForce RTX 4080 12GBGeForce RTX 3090 TiGeForce RTX 3090GeForce RTX 3080 TiGeForce RTX 3080 12GBGeForce RTX 3080GeForce RTX 3070 TiGeForce RTX 3070GeForce RTX 3060 TiGeForce RTX 3060 rev. 2GeForce RTX 3060GeForce RTX 3050GeForce RTX 2080 TiGeForce RTX 2080 SuperGeForce RTX 2080GeForce RTX 2070 SuperGeForce RTX 2070GeForce RTX 2060 SuperGeForce RTX 2060GeForce GTX 1660 TiGeForce GTX 1660 SuperGeForce GTX 1660GeForce GTX 1650 SuperGeForce GTX 1650 GDDR6GeForce GTX 1650 rev.3GeForce GTX 1650 rev.2GeForce GTX 1650GeForce GTX 1630GeForce GTX 1080 TiGeForce GTX 1080GeForce GTX 1070 TiGeForce GTX 1070GeForce GTX 1060GeForce GTX 1060 3GBGeForce GTX 1050 TiGeForce GTX 1050 3GBGeForce GTX 1050GeForce GT 1030GeForce GTX Titan XGeForce GTX 980 TiGeForce GTX 980GeForce GTX 970GeForce GTX 960GeForce GTX 950GeForce GTX TitanGeForce GTX 780 TiGeForce GTX 780GeForce GTX 770GeForce GTX 760GeForce GTX 750 TiGeForce GTX 750GeForce GT 740GeForce GT 730GeForce GTX 690GeForce GTX 680GeForce GTX 670GeForce GTX 660 TiGeForce GTX 660GeForce GTX 650 Ti BoostGeForce GTX 650 TiGeForce GTX 650GeForce GT 640 rev.2GeForce GT 640GeForce GT 630 rev.2GeForce GT 630GeForce GTX 590GeForce GTX 580GeForce GTX 570GeForce GTX 560 TiGeForce GTX 560GeForce GTX 550 TiGeForce GT 520GeForce GTX 480GeForce GTX 470GeForce GTX 465GeForce GTX 460 SEGeForce GTX 460 1024MBGeForce GTX 460 768MBGeForce GTS 450GeForce GT 440 GDDR5GeForce GT 440 GDDR3GeForce GT 430GeForce GT 420GeForce GTX 295GeForce GTX 285GeForce GTX 280GeForce GTX 275GeForce GTX 260 rev. 2GeForce GTX 260GeForce GTS 250GeForce GTS 240GeForce GT 240GeForce GT 230GeForce GT 220GeForce 210Geforce 205GeForce GTS 150GeForce GT 130GeForce GT 120GeForce G100GeForce 9800 GTX+GeForce 9800 GTXGeForce 9800 GTSGeForce 9800 GTGeForce 9800 GX2GeForce 9600 GTGeForce 9600 GSO (G94)GeForce 9600 GSOGeForce 9500 GTGeForce 9500 GSGeForce 9400 GTGeForce 9400GeForce 9300GeForce 8800 ULTRAGeForce 8800 GTXGeForce 8800 GTS Rev2GeForce 8800 GTSGeForce 8800 GTGeForce 8800 GS 768MBGeForce 8800 GS 384MBGeForce 8600 GTSGeForce 8600 GTGeForce 8600 GSGeForce 8500 GT DDR3GeForce 8500 GT DDR2GeForce 8400 GSGeForce 8300GeForce 8200GeForce 8100GeForce 7950 GX2GeForce 7950 GTGeForce 7900 GTXGeForce 7900 GTOGeForce 7900 GTGeForce 7900 GSGeForce 7800 GTX 512MBGeForce 7800 GTXGeForce 7800 GTGeForce 7800 GS AGPGeForce 7800 GSGeForce 7600 GT Rev.2GeForce 7600 GTGeForce 7600 GS 256MBGeForce 7600 GS 512MBGeForce 7300 GT Ver2GeForce 7300 GTGeForce 7300 GSGeForce 7300 LEGeForce 7300 SEGeForce 7200 GSGeForce 7100 GS TC 128 (512)GeForce 6800 Ultra 512MBGeForce 6800 UltraGeForce 6800 GT 256MBGeForce 6800 GT 128MBGeForce 6800 GTOGeForce 6800 256MB PCI-EGeForce 6800 128MB PCI-EGeForce 6800 LE PCI-EGeForce 6800 256MB AGPGeForce 6800 128MB AGPGeForce 6800 LE AGPGeForce 6800 GS AGPGeForce 6800 GS PCI-EGeForce 6800 XTGeForce 6600 GT PCI-EGeForce 6600 GT AGPGeForce 6600 DDR2GeForce 6600 PCI-EGeForce 6600 AGPGeForce 6600 LEGeForce 6200 NV43VGeForce 6200GeForce 6200 NV43AGeForce 6500GeForce 6200 TC 64(256)GeForce 6200 TC 32(128)GeForce 6200 TC 16(128)GeForce PCX5950GeForce PCX 5900GeForce PCX 5750GeForce PCX 5550GeForce PCX 5300GeForce PCX 4300GeForce FX 5950 UltraGeForce FX 5900 UltraGeForce FX 5900GeForce FX 5900 ZTGeForce FX 5900 XTGeForce FX 5800 UltraGeForce FX 5800GeForce FX 5700 Ultra /DDR-3GeForce FX 5700 Ultra /DDR-2GeForce FX 5700GeForce FX 5700 LEGeForce FX 5600 Ultra (rev. 2)GeForce FX 5600 Ultra (rev.1)GeForce FX 5600 XTGeForce FX 5600GeForce FX 5500GeForce FX 5200 UltraGeForce FX 5200GeForce FX 5200 SEGeForce 4 Ti 4800GeForce 4 Ti 4800-SEGeForce 4 Ti 4200-8xGeForce 4 Ti 4600GeForce 4 Ti 4400GeForce 4 Ti 4200GeForce 4 MX 4000GeForce 4 MX 440-8x / 480GeForce 4 MX 460GeForce 4 MX 440GeForce 4 MX 440-SEGeForce 4 MX 420GeForce 3 Ti500GeForce 3 Ti200GeForce 3GeForce 2 Ti VXGeForce 2 TitaniumGeForce 2 UltraGeForce 2 PROGeForce 2 GTSGeForce 2 MX 400GeForce 2 MX 200GeForce 2 MXGeForce 256 DDRGeForce 256Riva TNT 2 UltraRiva TNT 2 PRORiva TNT 2Riva TNT 2 M64Riva TNT 2 Vanta LTRiva TNT 2 VantaRiva TNTRiva 128 ZXRiva 128

    You can simultaneously select
    up to 10 video cards by holding Ctrl

    • U.A. | EN

    Radeon 8500 video card [in 1 benchmark]

    ATI
    Radeon 8500

    • AGP interface 4x
    • Core frequency 275 MHz
    • Video memory size 64 MB
    • Memory type DDR
    • Memory frequency 550 MHz
    • nine0003 Maximum resolution

    Description

    ATI started Radeon 8500 sales 14 August 2001. This is Rage 7 architecture desktop card based on 150 nm manufacturing process and primarily aimed at gamers. It has 64 MB of DDR memory at 0.55 GHz, and coupled with a 128-bit interface, this creates a throughput of 8.800 Gb / s.

    In terms of compatibility, this is a single-slot card connected via the AGP 4x interface. An additional power cable is not required for connection, and the power consumption is 23 W. nine0187

    We don’t have test results for the Radeon 8500.

    General Information

    Information about the type (desktop or laptop) and architecture of the Radeon 8500, as well as when sales started and cost at that time.

    Rage 7 (2001–2006)

    0246

  • place in the performance rating A
    Memorial capacity 8.800 GB/s of 14400 (Radeon R7 M260)

    Video

    Types and number of video connectors present on Radeon 8500. As a rule, this section is relevant only for desktop reference video cards, since for laptop ones the availability of certain video outputs depends on the laptop model.

    Video connectors 9
    Vulkan N/A

    Benchmark tests

    These are the results of Radeon 8500 rendering performance tests in non-gaming benchmarks. The overall score is set from 0 to 100, where 100 corresponds to the fastest video card at the moment.


    • Passmark
    Passmark

    This is a very common benchmark included in the Passmark PerformanceTest package. He gives the graphics card a thorough evaluation by running four separate tests for Direct3D versions 9, 10, 11 and 12 (the latter is done in 4K resolution if possible), and a few more tests using DirectCompute.

    Benchmark coverage: 26%

    ATI 8500
    6


    According to our statistics, these processors are most often used with the Radeon 8500.


    A8
    6410

    8.4%


    Core i5
    nine0245 4210U

    7.5%


    Core i7
    4510U

    6.6%


    Core i3
    4005U

    5.4%


    Pentium
    3558U

    4.5%


    Core i3
    4030U
    nine0209

    4.2%


    Pentium
    2020M

    3.3%


    A6
    6310

    3.3%


    Core i5
    7200U

    2.7%


    Core i3
    3110M

    2.